

Applications of Elemental Analysis in the Mining and Mineral Resource Industry Part 2

Welcome to our Minerals, Mining & Geology Webinar Series

Applications of Elemental Analysis in the Mining and Mineral Resource Industry

Part 1: XRF as a flexible tool for elemental analysis of geological samples
Dec. 1st 2020: 9:00 AM, 4:00 PM (CET)

→ Get the recording!

Part 2: *Process Monitoring and Grade Control in the Mining and Mineral Resource Industry by XRF*

Dec. 15th 2020: 9:00 AM, 4:00 PM (CET)

Dr. Adrian Fiege Product Management XRF Karlsruhe, Germany

Dr. Kai Behrens Head of XRF Product Management Karlsruhe, Germany

Today's Topics

Feedback from Part 1:

- Please tell us more about online-XRF, the S2 KODIAK and typical applications in mining
- Sample preparation as pressed pellet and applications
- Application examples detection limits and interferences
 → Partially covered

Outline Part 2

- Introduction: When and where to use XRF for Mining operations?
- Sample preparation: Pressed pellets
- Which solution is optimal for my application?
- Application Examples
 - Tungsten and Copper Ore (Online XRF)
 - Iron Ore (EDXRF vs. WDXRF)
 - Nickel Ore (EDXRF vs. benchtop WDXRF)
- Summary & Outlook & Q&A Session

What and when do we analyze in mining operations?

What?

Major, minor and trace elements in all sorts of ores ranging from industrial minerals and commodities, to base metal ore, and to precious metal ores. -> Focus on decision making elements (grades, tracers, penalty elements)

When?

During exploration

- Individual rock samples
- Drill cores
- Monitoring to survey geological situation, many elements in wide ranges

During mining operation

- Blast holes
- Drill cores
- Quick decisions for operation (no delay), mine planning, major elements

During beneficiation and blending

- Grade control at various steps of the process
- Quick decisions, focus on precision, no further delay of material movement, vital elements

When releasing, shipping, or receiving

- Certify final grade control
- Raw material ID
- Accurate analysis for value determination, highest accuracy

X-ray Fluorescence (XRF) spectrometry Element range

X-ray Fluorescence (XRF) analysis is qualitative and quantitative method for the determination of element concentrations via excitation of atoms in the sample and detection of the characteristic Xrays.

- High-power WDXRF (4–1 kW):
 Be (B) Am
- Medium WDXRF (400 W):
 O (F) Am
- Modern EDXRF:
 C (F) Am
- Low-power EDXRF: Na (Mg) – Am

н																	Не
Li	Be											В	С	N	0	F	Ne
Na	Mg											AI	Si	Р	S	Cl	Ar
к	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac															
			,	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				Th	Pa	U	Np	Pu	Am			3					

- Element range XRF: (Be) B to Am
- Concentration range: Sub-ppm to 100 %

Audience Poll

What are your main goals with elemental analysis – What are you trying to achieve? (Check all that apply.)

- Check quality of incoming material
- Increase percentage of recycled material in production
- Optimize production costs
- Increase throughput
- Optimize final product quality
- Other (specify)

Sample preparation Pressed pellets vs. Fused beads

Pressed Pellets Pro's

- Fast & simple sample preparation method
- No loss of volatile elements
- Easily automatable

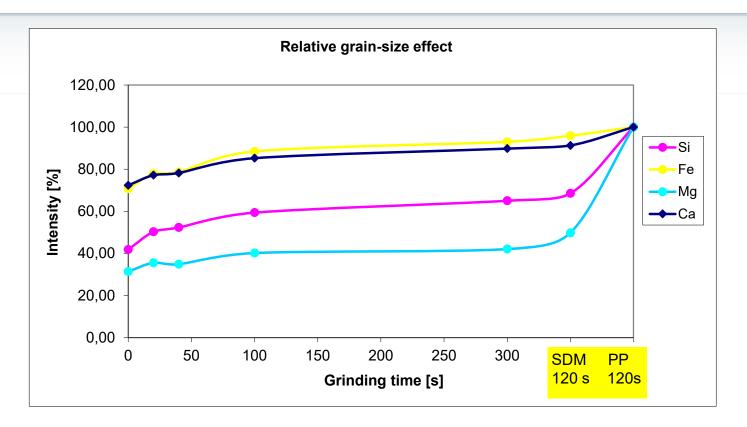
Con's

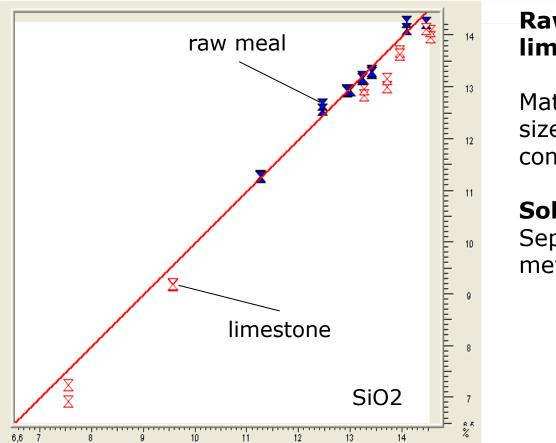
- Grain size and matrix effects
- Sample contamination via the grinding vessel

Fused Beads Pro's

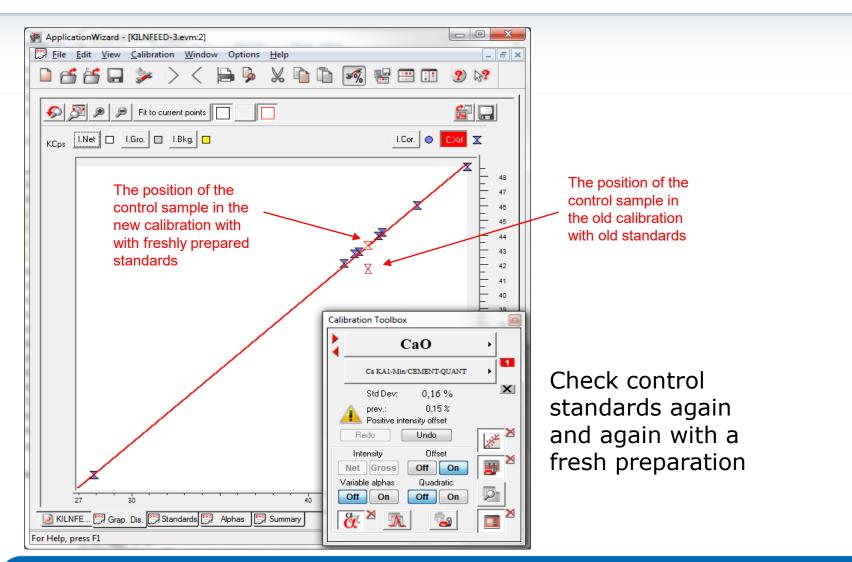
- No Matrix and grain size
- High reproducibility for best accuracy and precision
- Larger calibration range

Con's


- More expensive equipment and consumables
- Higher dilution factor → not suitable for traces


- Fast method
- Easily automatable
- Grain size and matrix effects are not problematic for material-specific calibrations
- But sample contamination via the grinding vessel:
- Agate: SiO₂ 99.91%; traces of Al, Na, Fe, K, Mn, Ca, Mg
- Corundum ceramic: Al₂O₃, traces of K, Na, Si, Ca, Cu, Fe, Mg, Pb, B, Cr, Li, Mn and Ni
 - Tungsten carbide: C 6%, Co 6% and W 88%
 - Chromium steel: C 1.93%; Cr 13.21%, Traces of Cu, Mn, Mo, Ni, P, Si, S, W

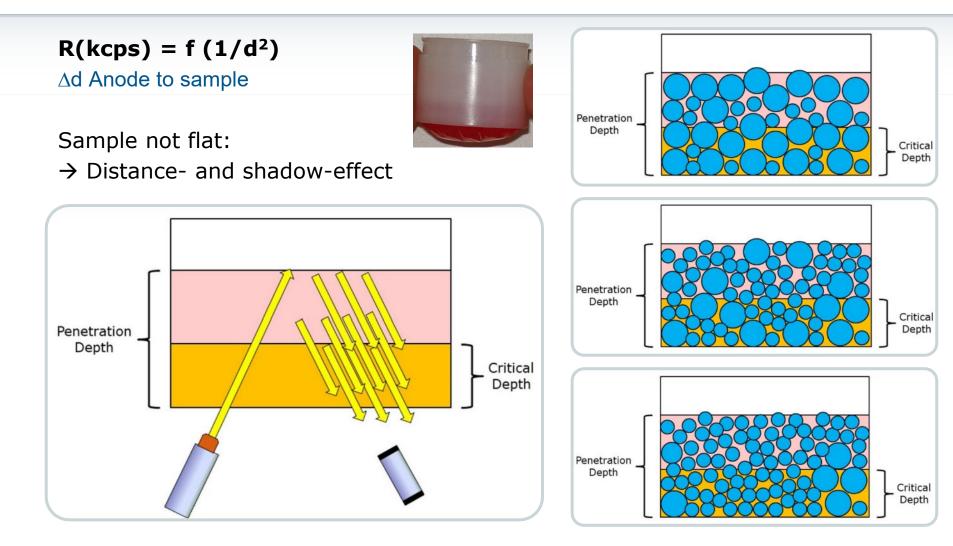
- Grinding was originally carried out with a mortar grinder (0-300 s). The grain size could only be reduced minimally.
- SDM = vibrating disc mill is used today to optimally reduce the grain size
- PP = A press pellet was produced from the SDM sample



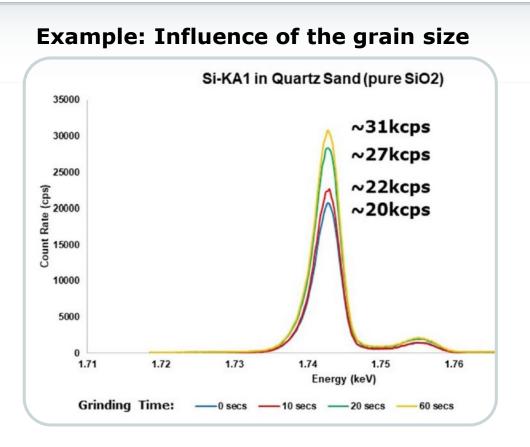
Raw meal and limestone

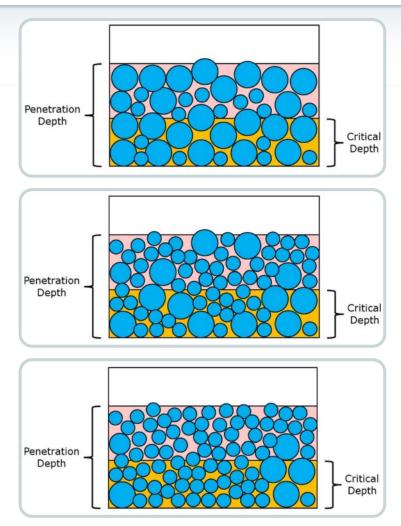
Matrix and grain size effects not compensated

Solution: Separation of methods



December 18, 2020


Influence for loose powders and liquids



Sample preparation Grinding

Sample preparation Thickness of pressed pellet

Z	Element	Line	Energy (keV)	Graphite	SiO2	Fe	Pb		
5	В	KA1	0.1833	5.0	1.0	0.3	0.1		
9	F	KA1	0.6768	5.0	3.0	0.4	0.3		
11	Na	KA1	1.0419	16.0	10.0	0.9	0.9		
13	Al	KA1	1.4875	45.0	26.0	2.0	2.0		
14	Si	KA1	1.7412	72.0	40.0	4.0	3.0		
20	Са	KA1	3.6910	684.0	88.0	28.0	4.0		
56	Ва	LA1	4.4640	989.0	98.0	43.0	5.0		
22	Ti	KA1	4.5104	1.3	156.0	47.0	6.0		
25	Mn	KA1	5.8981	2.8	338.0	96.0	12.0		
26	Fe	KA1	6.4031	3.6	430.0	119.0	15.0		
29	Cu	KA1	8.0481	7.1	838.0	28.0	26.0		
74	W	LA1	8.3976	8.0	949.0	31.0	29.0		
82	Pb	LA1	10.5512	15.0	1.9	57.0	52.0		
40	Zr	KA1	15.7749	4.4	6.0	176.0	43.0		
42	Мо	KA1	17.4791	5.5	8.0	234.0	47.0		
45	Rh	KA1	20.2158	7.3	12.0	355.0	70.0		
47	Ag	KA1	22.1630	8.5	16.0	460.0	89.0		
56	Ва	KA1	32.1929	13.1	4.0	1.3	242.0		
	$\Box = cm$ $\Box = mm$ $\Box = \mu m$								

From hand-picked sample to concentrate: Which analytics should I choose?

Hand-held XRF

Ideal for quick assessment in the field or check of a truck load

Micro-XRF

Great tool for exploration / drill cores

Online XRF

 Fastest way to check the quality on your conveyor belt and monitor the production process

EDXRF

Quick and reliable grade control – mainly for major and minor elements

Benchtop WDXRF

• Grade control down to the ppm level

Sequential, full-power WDXRF

 Combining high throughput with accuracy and precision for most elements and concentrations

Multi-channel WDXRF

• Fastest quality check but not flexible regarding changing requirements

S2 KODIAK Online XRF

Online XRF multi-element analyzer for real-time results in mining of base metal ores, and industrial minerals:

- Analysis of major, minor and trace elements
- Real-time analysis of fines and lumps up to > 30 cm diameter
- Covers K U for lumps
- Covers Si U for fines
- Handling of dry and humid materials
- Integration time from 1 s upwards
- In mining, mineral beneficiation and blending

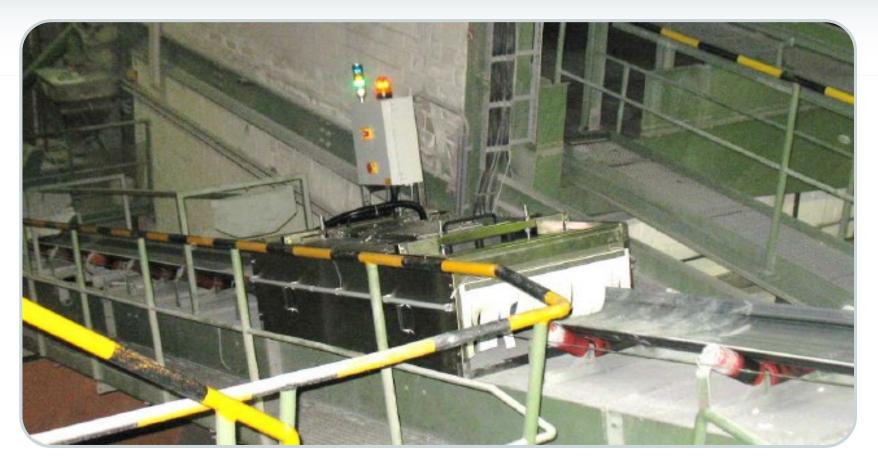
S2 KODIAK Benefits for Mining Applications

- The S2 KODIAK can trigger automated rock sorting with predefined cut-off levels
- Real-time screening of ore grades
- Mineral beneficiation
 - Enhanced recovery rate and higher ore grades
- Blending
 - Produce homogenous ore grades
 - Use highest grade ores sparsely
- Shipping:
 - No penalty claims from ore buyers

S2 KODIAK Mining Applications

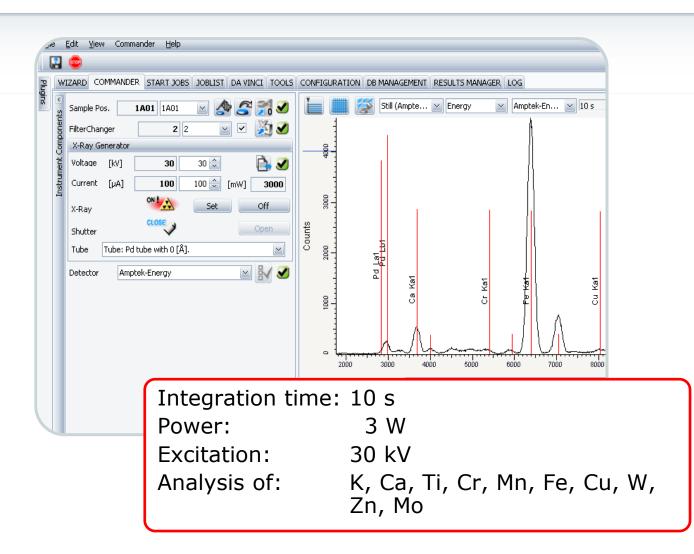
- Exploitation in surface and underground mining
 - Copper
 - Iron
 - Mangan
 - Multimetal
 - Uranium
 - Coal
 - Industrial minerals
- Material sorting and separation of waste rocks when
 - Loading, hauling, crushing, milling, flotation, leaching, concentrating, drying, shipment

S2 KODIAK Ready for 24/7 operation

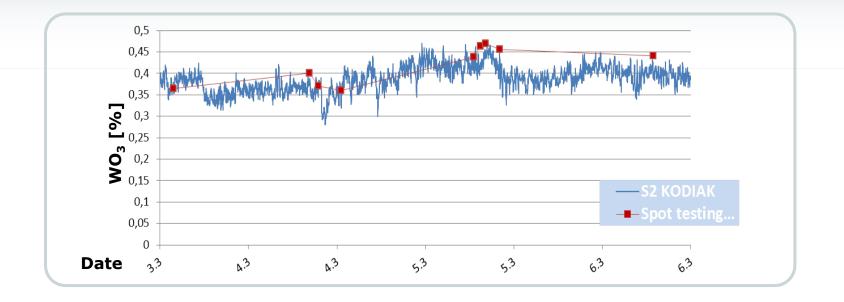

- Autonomous operation 24/7
- Integrated UPS, camera and distance sensor
- TCP/IP data transfer to any plant control SW
- Maintenance-free operation, operates with electrical power only
- Optimal occupational health and safety, operates without radioactive sources

- Corrossion resistant, rugged design (V2A)
- Enhanced cooling concept
- Prepared for rough mining enviroments
- Enclosure protection class
 Storage/cleaning mode: IP69K
 Acquisition mode: IP65

S2 KODIAK Installation at tungsten mine



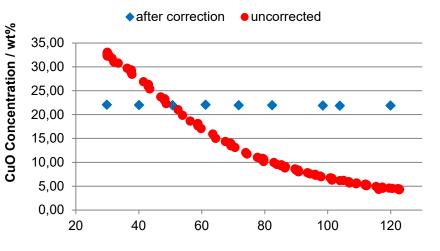
S2 KODIAK, compact, fully radiation safe housing, installed top of the belt Positioned after first mill, before second mill to analyze feedstock of flotation


Tungsten Ore Live View of Sample Spectrum

S2 KODIAK Real versus lab based results

- Excellent match between lab based spot testing and S2 KODIAK
- Better adjustment of flotation parameters based on S2 KODIAK:
 - Drop in concentration of WO_3 on 4.3 and 5.3. is only seen with S2 KODIAK
 - Excesson 6.3. in a short period of time
- Enhance recovery rates possible

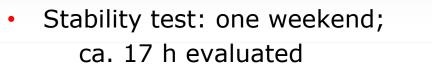
Project Overview Application Concentrate


- Analysis of Copper Concentrate material
 - Sorting of concentrates
 - High copper content, low contamination content
 - Low copper content, higher contamination content
 - blending process to from homogenized final product
 - The concentrate is typically composed as follows:
 - Cu: 10wt% 50wt%
 - Fe: 10wt% 30wt%
 - Contaminants: As, Zn, Bi, Se
 - Material size: Fines

S2 KODIAK Distance correction

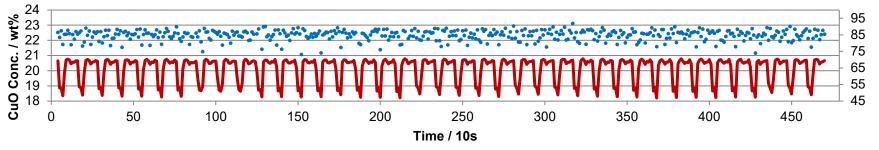
- Material height variation on the belt
- S2 KODIAK operates with
 - Sample height control
 - Integrated ultrasonic sensor
 - Internal Standardization (Argon peak)
 - Software algorythm

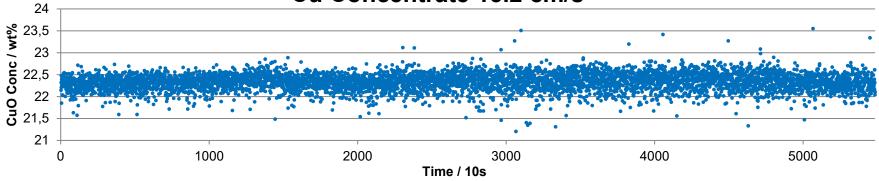
Impact of Distance Correction



Distance / mm

Std.Dev.	CuO	Fe2O3
Abs.	0.07 wt%	0.3 wt%
Rel.	0.3 %	1.5 %




	CuO Conc / wt%	Std. Dev. / wt%	Rel. Dev. / %
1.8 cm/s	22.36	0.34	1.6
15 cm/s	22.30	0.34	1.6

Cu Concentrate 15.2 cm/s

December 18, 2020

Distance / mm

Summary S2 KODIAK Online XRF

Within 10 s integration time different fe grades can be determined and values being used for blending and shipment control

Continuous unattended operation possible

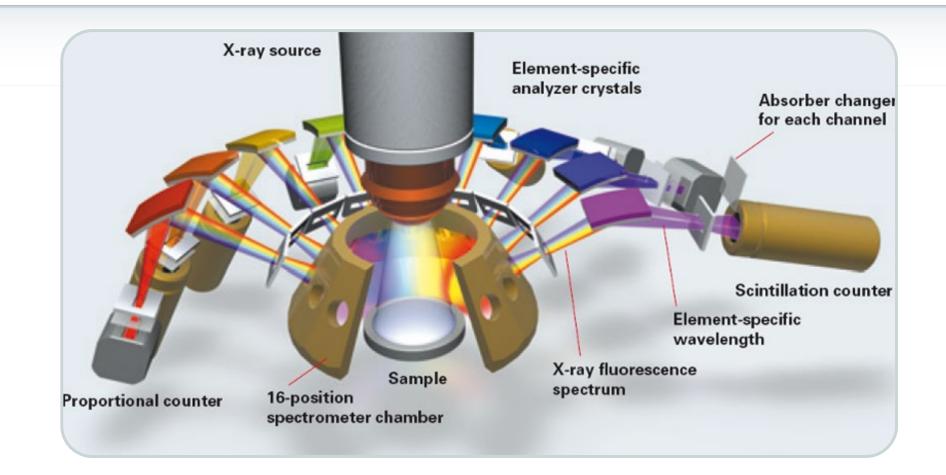
••

Arsenic, manganese, calcium possible to integrate w/o additional measurement time

••

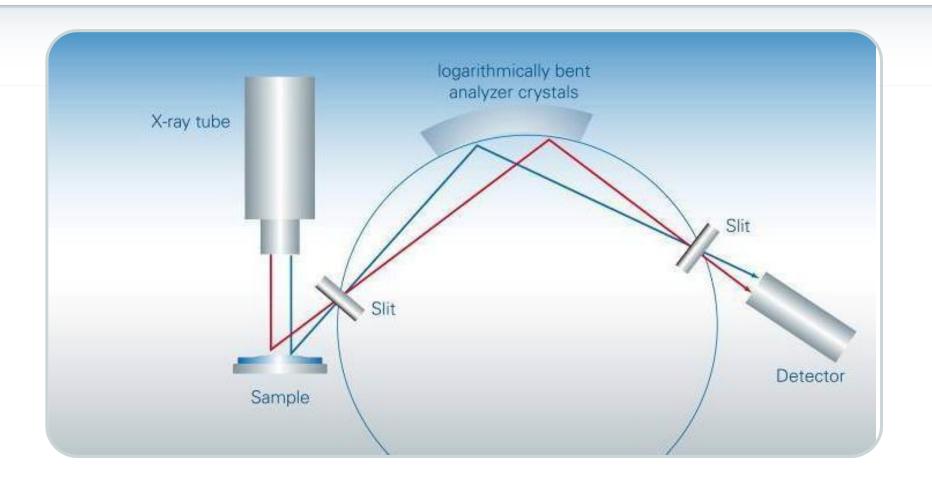
Depending on origin different methods can be loaded remotely to the S2 KODIAK

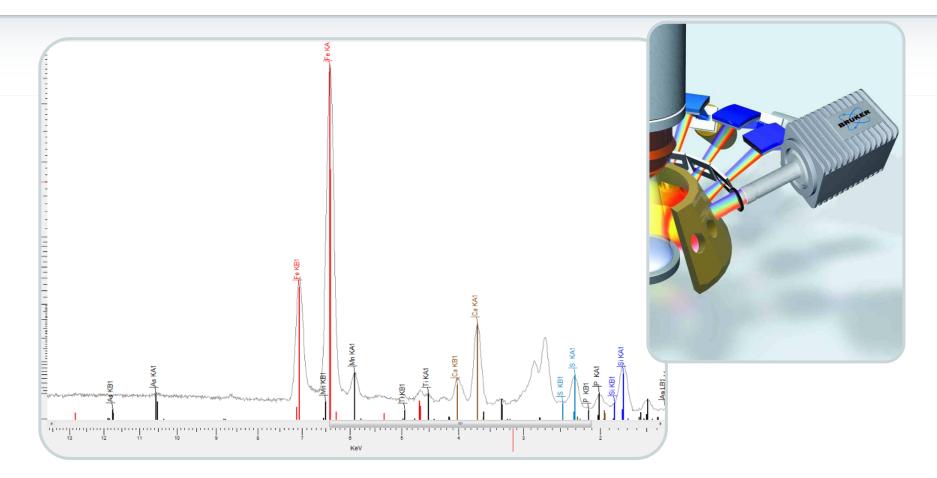
Bruker SIM WDXRF Portfolio For process control in heavy industries



The S8 LION is our solution for fast, precise and accurate industrial process control in

- Cement
- Industrial minerals
- Base metal mining
- Iron and steel
- Non-Ferrous (Al-Base, Cu-Base)
- Commercial service labs


S8 LION Spectrometer Setup


S8 LION Rowland Circle Geometry

Spectrum Iron Ore - MEC Dual Mode Data Acquisition

Parallel Measurement of SEC (WDX) and Multi Element Channel Identification of trace elements, internal backup (second information source)

December 18, 2020

S8 LION For central labs and mining service labs

Optimized for highest throughput and optimal cost effciency

Autonomous operation 24/7

- 90 samples in 6 racks
- 15 samples per rack

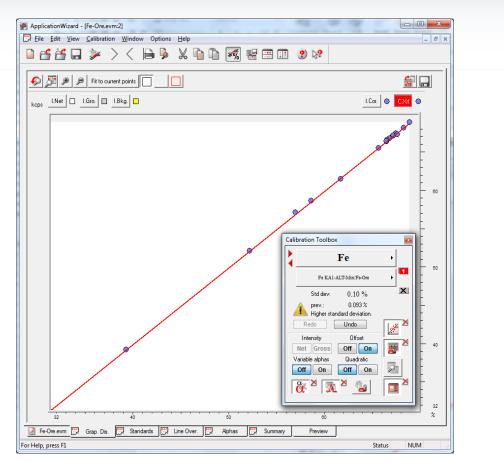
In addition to the internal loader

- with 10 positions or,
- with 8 position in combination with online sample feed from automated sample preparation

Add an MEC for extra flexibility

Application Example: Iron Ore

Iron Ore Analysis done to:


- Evaluate the commercial value (mainly Fe total)
- Control the mining process and the refining process
- Highest accuracy and precision in combination with high sample throughput is needed

S8 LION – Iron Ore Pressed Pellets

- Calibration curve for Fe $(R^2 = 0.99983)$
- Elements covered: Fe, Si, Ca, Mn, Al, Ti, Mg, P, S, K, Cr, Co, Ni, Zn

December 18, 2020

More information with the Multielement Channel MEC

Calibration Details for Fe: Range 34.67 -71.50 %

Fe (Single Element Channel) – LiF 200:
Calibration Std. Dev.:0.563 %Fe (Multi Element Channel) – SDD:
Calibration Std. Dev.:0.503 %

S8 LION – Iron Ore Repeatability of Pressed Pellets

	Fe	SiO2	CaO	Mn2O3	AI2O3	TiO2	MgO	P2O5	SO3
	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
Rep 01	67.18	1.20	0.045	1.02	0.814	0.033	0.262	0.037	0.102
Rep 02	67.18	1.20	0.045	1.02	0.808	0.033	0.262	0.037	0.102
Rep 03	67.21	1.20	0.045	1.02	0.812	0.033	0.261	0.037	0.105
Rep 04	67.19	1.20	0.045	1.02	0.811	0.034	0.263	0.037	0.106
Rep 05 - 16									
Rep 17	67.20	1.20	0.045	1.02	0.812	0.034	0.261	0.037	0.121
Rep 18	67.18	1.21	0.045	1.02	0.815	0.033	0.263	0.037	0.123
Rep 19	67.20	1.20	0.045	1.02	0.811	0.033	0.262	0.037	0.123
Rep 20	67.15	1.20	0.045	1.02	0.812	0.033	0.262	0.037	0.124
Min. [%]	67.14	1.199	0.045	1.018	0.808	0.033	0.260	0.037	0.102
Max. [%]	67.21	1.210	0.045	1.020	0.816	0.034	0.264	0.038	0.124
Mean value	67.17	1.203	0.045	1.019	0.813	0.033	0.262	0.037	0.114
Abs. Std. Dev.	0.022	0.003	0.000	0.001	0.002	0.000	0.001	0.000	0.007
Rel. Std. Dev. [%]	0.033	0.22	0.56	0.058	0.27	1.03	0.28	0.75	6.06

S8 LION for Incoming Material Inspection Iron Ore/Sinter

- According to ISO 9516 (WDXRF)
- Fused beads
 - At commercial and service labs
 - At central labs
 - At customs
- Maximum 60 s measurement time
- Excellent long-term precision for 200 measurements

Sample	Average (%)	Abs. Std. Dev. (%)	Rel. Std. Dev. (%)
Fe (%)	47.065	0.013	0.028
SiO ₂ (%)	0.673	0.006	0.869
P (%)	0.031	0.001	0.746
Al ₂ O ₃ (%)	4.081	0.014	0.334
Mn (%)	15.348	0.016	0.102
CaO (%)	0.032	0.001	1.867
MgO (%)	0.032	0.002	5.401
TiO ₂ (%)	0.023	0.003	11.705
K ₂ O (%)	0.160	0.001	0.484

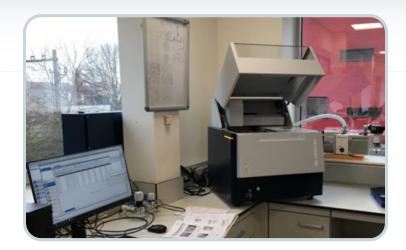
S6 JAGUAR High Performance Benchtop WDXRF

Maintain WDXRF resolution:

- Compact goniometer with high precision gears and closely coupled X-ray beam path
- Optimized analyzer crystals for the entire element range and special applications

Maintain analytical precision and sensitivity:

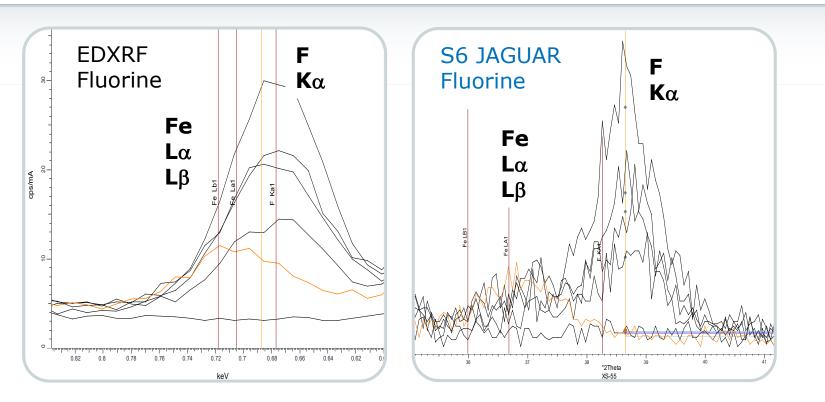
- Higher power X-ray tube compared to EDXRF (there is no saturation due to single element detection)
- HighSense detection with 2 Mcps count rate
- HighSense XE detector for medium and heavy elements


S6 JAGUAR Customer feedback

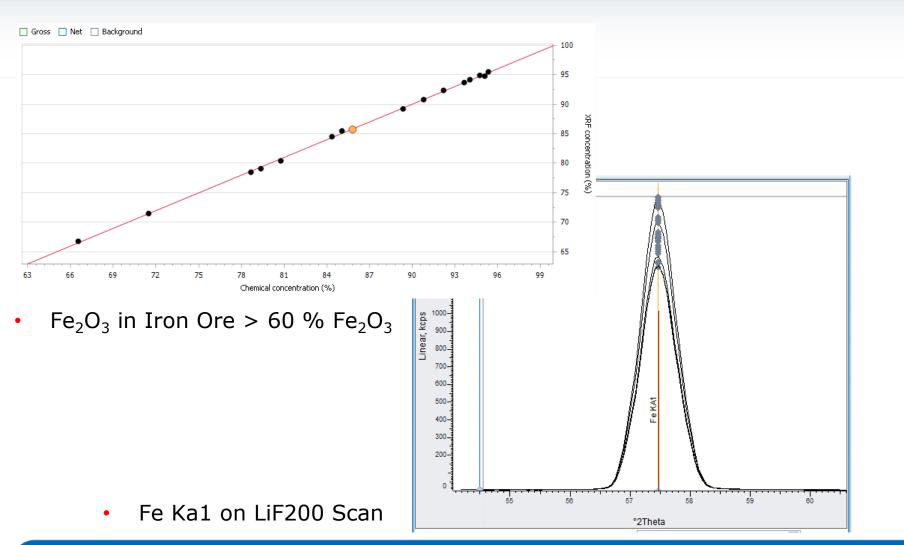
A world-famous manufacturer of refractory and foundry products was looking for a spectrometer for the analysis of main elements in magnesites, etc.,....

- In addition to traces, the analysis of fluorine was also important:
 - Is a large WDXRF spectrometer required?

The S6 JAGUAR showed excellent performance for light and important elements with optimal accuracy, surpassing EDXRF in particular for fluorine.



S6 JAGUAR versus EDXRF F in Foundry Products



Strong overlap of F Ka and Fe La with **EDXRF** leads to medium accuracy and precision: **Min 3.59 % > 3.78 % < Max 4.07 %** S6 JAGUAR: Optimal resolution, clear separation of both lines, high sensitivity with 400 W power: **Min 3.97 % > 4.03 % < Max 4.07 %**

S6 JAGUAR – Iron Ore Pressed Pellets

December 18, 2020

S6 JAGUAR – Iron Ore Repeatability of Pressed Pellets

	Al2O3 [%]	SiO2 [%]	MgO [%]	MnO [%]	Fe2O3 [%]	TiO2 [%]	P [%]	S [%]
Rep 01	15.91	15.72	0.26	0.02	62.46	0.48	0.118	0.01
Rep 02	15.89	15.70	0.28	0.02	62.68	0.48	0.117	0.01
Rep 03	15.88	15.71	0.25	0.02	62.68	0.48	0.118	0.01
Rep 19	15.88	15.70	0.26	0.02	62.76	0.48	0.118	0.02
Rep 20	15.85	15.73	0.27	0.02	62.75	0.48	0.116	0.02
Rep 21	15.88	15.72	0.28	0.02	62.61	0.48	0.118	0.02
Mean value	15.89	15.71	0.27	0.02	62.57	0.48	0.12	0.02
Abs. Std. Dev.	0.077	0.032	0.008	0.000	0.379	0.002	0.001	0.004
Rel. Std. Dev. [%]	0.48	0.20	2.95	0.00	0.61	0.46	0.55	19.31

S8 TIGER Series 2 HighSense

- HighSense Technology for
 - Ultimate detection limits
 - Optimal sensitivity
 - Best precision
 - Enhanced light element sensitivity
 - Shortest measurement times
- Optimal instrument configurations for
 - Industry
 - Metals
 - Minerals & Mining
 - Petrochemistry
 - Cement
 - Chemistry & Pharma
 - Automotive

Academia and Research

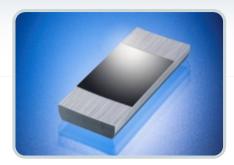
- Universities
- Governmental labs
- Industrial R&D

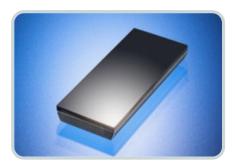
S8 TIGER Series 2 HighSense

Optimal detection for every element from Be – Am, ppm to 100%:

- 20 60 kV, 5 170 mA for 4 kW
- 10 primary beam filters
- 8 collimator masks
- HighSense vacuum seal
- 8 analyzer crystals out of 18 available
- Two detectors with HighSense counting electronics

S8 TIGER Series 2 HighSense: Analyzer Crystals


8 position crystal changer


More than 18 different crystals available:

optimized **HighSense** crystals:

- XS-CEM: long-term stable, temperature independent
- XS-GE-C: plus 40% intensity for P, plus 20% intensity for S
- XS-PET-C: plus 20 % intensity for Al
- XS-B: plus 100% intensity for B
- XS-N-HS: plus 100% intensity for N
 - XS-C: 30% reduced background for C
 - XS-100 time optimized measurement 25% time savings
 - XS-400 plus 35 % more intensity in the range of K to U

S8 TIGER Series 2 HighSense: Counting Electronics

HighSense counting electronics

- Quick application setup with instant display of PHA scan
- On-the-fly dead time correction with fast data processing
- Advanced MCA technology
- Excellent detector linearity
 - FC: up to 4 Mio cps
 - SC: up to 4 Mio cps
 - DynaMatch: up to 13 Mio cps
 - Five times better than conventional WDX spectrometers
- Better analytical precision
- Faster measurements
- Easy application setup due to wide range calibration

GEO-QUANT Iron Ore Norm compliant Analysis of Iron Ore (ISO 9516)

н																He
Li Be	e										В	С	N	0	F	Ne
Na	9										AI	Si	Р	S	CI	Ar
КС	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb Si	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr Ra	Ac															

Selection of elements provides

- 21 elements including Na (Na not required in ISO 9516)
- Typically ~16 minutes
- Correct occurring line overlays of the elements
- Matrix effects

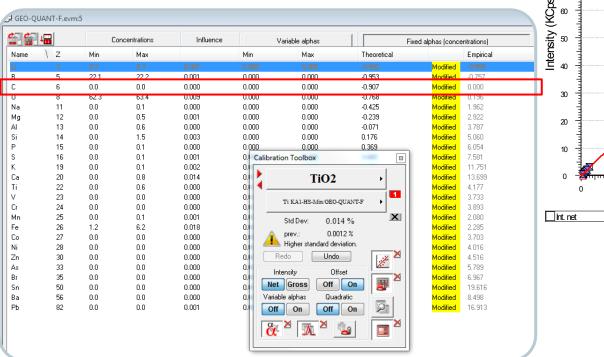
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Th	Pa	U	Np	Pu	Am	Sum		m Matrix		Com	pton	Rayleigh	

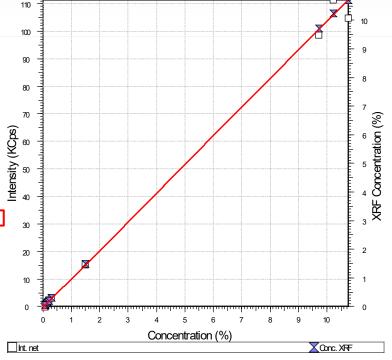
GEO-QUANT Iron Ore Concentration Range

	GEO-QUANT Ire	on Ore	ISO 9516				
	Min [%]	Max [%]	Min [%]	Max [%]			
Fe ₂ O ₃	18.9	97.0	54.3	100.0			
SiO ₂	0.6	36.3	0.42	13.9			
CaŌ	0.01	15.8	0.03	17.8			
Mn_3O_4	0.021	2.0	0.03	1.1			
Al_2O_3	0.1	11.5	0.19	6.6			
TiO ₂	0.005	10.7	0.03	7.8			
MgŌ	0.02	8.32	0.33	3.3			
P_2O_5	0.009	2.7	0.01	1.4			
SO ₃	0.007	2.3	0.1	1.5			
K ₂ O	0.003	2.6	0.01	0.5			
$V_2 O_5$	0.002	0.8	0.003	0.5			
SnO ₂	0.0001	0.2	0.001	0.02			
Cr_2O_3	0.001	0.2	0.001	0.04			
Co_3O_4	0.002	0.2	0.001	0.03			
NiÔ	0.001	0.2	0.014	0.017			
CuO	0.008	0.2	0.015	0.08			
ZnO	0.002	0.4	0.006	0,21			
As_2O_3	0.112	0.1	0.01	0.08			
PbO	0.004	0.56	0.02	0.34			
BaO	0.0012	0.2	0.04	0.45			

- Covers the ISO 9516
 application range
- Includes low grade materials

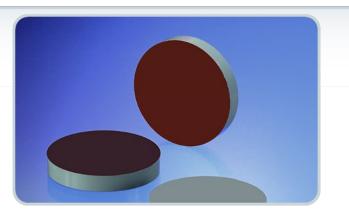
• QUANT package


- 16 certified reference materials (no synthetic standards)
- Evaluation samples
- User Manual
- Preparation Manual


GEO-QUANT Iron Ore Calibration details – Matrix Correction

Matrix correction with loss eliminated alphas:

- Carbon is set to zero
- New set of alphas has to be calculated
- No further need for LOI determination



Nickel Laterite (low grade nickel ore) will likely be the **dominant source of nickel** in the foreseeable future.

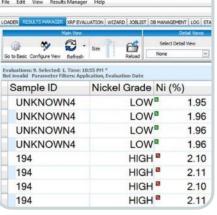
EDXRF is used for grade control in mining operations and smelters. It allows, e.g.,

- accurate determination of Ni
- analysis of waste rock elements
 - Ca, Mg, Fe, Mn
- evaluation of traces
 - Ti, Cr, Co, Cu, Zn
- Bruker is a trusted EDXRF supplier with many S2 PUMA installations at Ni-Laterite mines
- Time-to-result, ease-of-use, and flexibility are major benefits of the S2 PUMA with XY Autochanger

Enhanced Speed

The New S2 PUMA Series 2

3 x Higher count-rate, thanks to HighSense technology

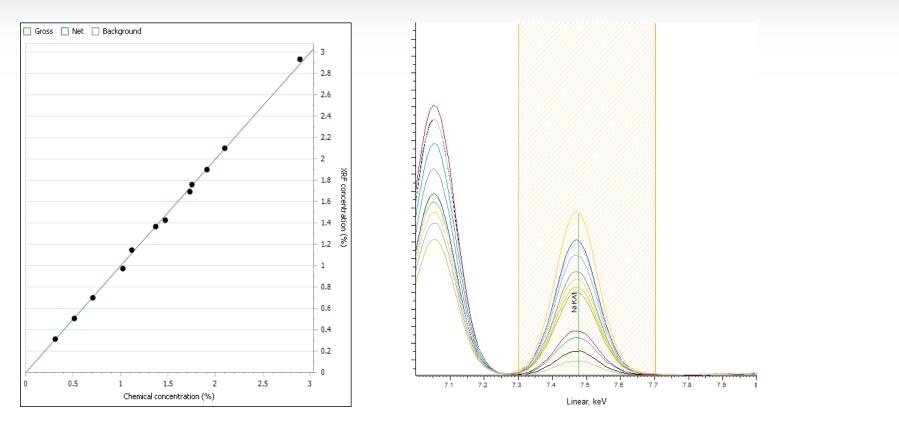

Elemental Analysis of Ni-Laterite Ore

Fast and reliable with the S2 PUMA Series 2

- 2 x Higher pump-rate
- Faster Software (up to 90%)

Enhanced Usability & Flexibility

- Improved user interface
- New features, such as Advanced/Basic mode and a Drift Monitoring tool
- ... and much more
- Setting thresholds for "High" and "Low" grade ore allows to quickly evaluate the results


- The new hardware features of the S2 PUMA Series 2 allow to further optimize the analytical settings for Ni-laterite analysis, resulting in better performance and shorter measurement times
- The improved workflow, the faster software, and the higher pump rate decrease the time-to-result even more

Analytical procedure:

- 25 kV, no beam filter, fixed current, 60 s counting time
- Pressed pellet preparation

- Calibration curve for Ni in Ni-Laterite (left) and Ni KA1 peaks (right)
- R² = 0.99887

Sample ID	Time-to-Result [min:sec)	Ni (%)	MgO (%)	Al ₂ O ₃ (%)	SiO ₂ (%)	CaO (%)	TiO ₂ (%)	Cr ₂ O ₃ (%)	MnO (%)	Fe ₂ O ₃ (%)	Co (PPM)	Cu (PPM)	Zn (PPM)
Rep-1	01:37	1.388	24.05	2.094	48.24	0.32	0.03	0.77	0.21	14.02	375	32	119
Rep-2	01:39	1.393	24.19	2.077	48.17	0.32	0.03	0.77	0.21	14.00	377	31	125
Rep-3	01:39	1.403	24.00	2.102	48.10	0.32	0.03	0.77	0.22	14.05	416	35	119
Rep-4	01:31	1.383	24.08	2.102	48.19	0.32	0.03	0.77	0.21	14.00	376	32	116
Rep-5	01:39	1.393	24.00	2.107	48.13	0.32	0.03	0.77	0.22	14.05	374	33	116
Rep-6	01:32	1.382	24.28	2.086	48.35	0.32	0.03	0.77	0.22	13.96	400	34	124
Rep-7	01:39	1.39	24.18	2.102	48.26	0.32	0.03	0.77	0.22	13.97	369	33	122
Rep-8	01:32	1.384	24.09	2.094	48.19	0.32	0.02	0.77	0.21	14.03	336	33	123
Rep-120	01:31	1.407	23.84	2.088	47.85	0.33	0.03	0.78	0.22	14.11	357	33	120
Average measured value	01:31	1.391	24.09	2.101	48.19	0.32	0.03	0.77	0.22	14.02	358	33	120
Abs. standard deviation		0.007	0.08	0.012	0.10	0.00	0.00	0.00	0.00	0.04	21	1	5
Rel. Standard deviation		0.50	0.32	0.57	0.21	1.46	8.00	0.26	2.25	0.29	5.77	3.31	4.03

 Excellent analytical performance in ~1.5 min (time-to-result) (most EDXRF spectrometers require 4-5 min)

XRF – The right tool for all tasks

S8 LION:

 Simultaneous instrument with shortest measurement times (<2 min), 4 kW, highest precision

S8 TIGER

 Sequential WDXRF for high demanding grade control. Analytical flexibility for major, minors and traces, optimal settings for each elements

S6 JAGUAR

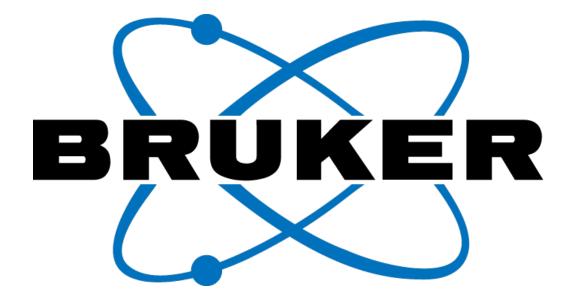
 Benchtop WDXRF: lower throughput but similar performance compared to full-size WDXRF, better spectral resolution than ED

S2 PUMA

Versatile tool for minor and major elements for quick decisions in mobile and small labs

S2 KODIAK

 On-belt analysis for quickest automated decisions along the production of high grade materials



Any questions?

Thanks for your time and interest!

Innovation with Integrity

© Copyright Bruker Corporation. All rights reserved.