

# Perfect Powder Diffraction Data Automatically: Dynamic Beam Optimization



#### **Dynamic Beam Optimization**



## Welcome to today's webinar from our Bruker AXS office in Karlsruhe, Germany!



Dr. Arnt Kern Product Line Manager XRD



Dr. Christina Drathen Product Manager XRD



#### **Dynamic Beam Optimization**

- Origins of parasitic scattering in XRPD data
- Minimizing parasitic scattering: Dynamic Beam Optimization

#### Application examples

#### Instrument considerations

- Supported instrument configurations
- Instrument upgrades

- 3 Things to remember
- Question & Answers



#### **Dynamic Beam Optimization**

- Origins of parasitic scattering in XRPD data
- Minimizing parasitic scattering: Dynamic Beam Optimization

Application examples

Instrument considerations

- Supported instrument configurations
- Instrument upgrades

- 3 Things to remember
- Question & Answers

## The Source of Parasitic Scattering... ... and its Consequences



- Parasitic Scattering makes data analysis harder and can lead to incorrect results.
- For good data, we want to minimize or completely avoid scattering that does not come from the sample.



| Main contributions | Typical phenomena                        | Analytical Consequences                                        |
|--------------------|------------------------------------------|----------------------------------------------------------------|
| Beam overflow      | (Broad) peaks from sample holder         | Incorrect relative intensities;<br>Incorrect amorphous content |
| Air-scattering     | High background at low and medium angles | Miss low angle peaks, wrong phase-ID; worse LOD* and LOQ**     |
| Direct beam spill  | Very high background at very low angles  | Difficult to differentiate between SAXS and parasitic signal   |
| Fluorescence       | Background is high                       | Worse LOD and LOQ                                              |

## Parasitic Scattering Traditional Beam Conditioning

- Beam spillover and air-scattering at low angles can be avoided by choosing appropriate diffractometer settings
- But optimizing the set-up for low angles can lead to detrimental negative effects at higher angles
- In reality, we often live with a compromise

| Component               | Low angles                                                       |
|-------------------------|------------------------------------------------------------------|
| 1. Divergence slit size | Avoid beam-spill<br>→ Small slit                                 |
| 2. Knife edge position  | Shield air scattering $\rightarrow$ Knife <b>close</b> to sample |
| 3. Detector opening     | Shield air scattering<br>→ Small window                          |





Dynamic Beam Optimization Fixed vs. Motorized Divergence Slits



- Fixed Divergence Slits (FDS):
  - Beam spillover at low angles  $2\theta$ , therefore scattering from the sample support and intensity losses at small angles  $2\theta$
- Motorized Divergence Slits (MDS):
  - Fixed illuminated specimen area, therefore <u>NO beam spillover and NO scattering</u> from the sample support; higher intensity





No beam spillover, no scatter from the sample support

## Dynamic Beam Optimization Fixed vs. Motorized Anti-Scatter Screen



- Traditional fixed knife edge
  - Placed as close to the beam as possible, risk of beam cropping
- Motorized Anti-Scatter Screen
  - Fully software controlled retraction of the knife, thus air scattering is almost entirely eliminated <u>without ANY cropping of the beam</u>
  - The Motorized Anti-Scatter Screen is THE component providing the greatest improvement on data quality



The beam is increasingly cropped as 20 increases



No beam cropping

## Dynamic Beam Optimization Variable Active Detector Window



- Fully software controlled switching-on of individual strips to "open" the active detector window as a function of 2θ, to further minimize air scattering
- Effective for data acquisition at angles  $<5^{\circ} 2\theta$ .
  - $\Rightarrow$  Reliable data acquisition starting at angles as low as ~ 0.3° 20



## **Dynamic Beam Optimization**



#### Fully software controlled synchronization of

- 1. Motorized Divergence Slits,
- 2. a Motorized Anti-Scatter Screen,
- 3. and a Variable Active Detector Window





**Dynamic Beam Optimization** 

- Origins of parasitic scattering in XRPD data
- Minimizing parasitic scattering: Dynamic Beam Optimization

#### Application examples

Instrument considerations

- Supported instrument configurations
- Instrument Upgrades

- 3 Things to remember
- Question & Answers

### Background Optimization High background – air scattering





#### Background Optimization High background – air scattering





#### Background Optimization High background – air scattering





#### Quantitative Mineralogy Shale Rock



- Comparison of fixed slit and motorized slit
- With MASS: improved low angle background, and no cropping of beam at high angles



May 5, 2020

# Quantification of amorphous content 5% and 1.5% Slag in Cement





# Very low angle measurement using VDO SAXS signal in SBA-15





# Very low angle measurement using VDO SAXS signal in SBA-15







**Dynamic Beam Optimization** 

- Origins of parasitic scattering in XRPD data
- Minimizing parasitic scattering: Dynamic Beam Optimization

Application examples

#### Instrument considerations

- Supported instrument configurations
- Instrument Upgrades

- 3 Things to remember
- Question & Answers

## Dynamic Beam Optimization Supported Instrument Configurations

Supported instruments:

• D8 ENDEAVOR, D8 ADVANCE, D8 DISCOVER

Dynamic beam components:

- Motorized Divergence Slits
- Motorized Anti-Scatter Screen
- Variable Active Detector Window

#### Fully software controlled / synchronized, no user-intervention required

Not all 3 components are required. All dynamic beam components <u>may also</u> be operated independently (unsynchronized) or in any dual combination (synchronized) - at the user's discretion







#### Dynamic Beam Optimization Upgrades



#### Dynamic beam components:

- Motorized Divergence Slits
  - Most instruments are already equipped with motorized slits
  - Upgrade recommended when beam spillover is an issue or to reduce measurement time

#### • Motorized Anti-Scatter Screen

- The core component of Dynamic Beam Optimization with the highest benefit in terms of data quality
- "Must have" to effectively minimize air scattering, specifically when using Motorized Divergence Slits

#### • Variable Active Detector Window

- Recommended for data acquisition at angles  $<5^{\circ}$  20 only
- Always included with the SSD160-2, LYNXEYE-2, LYNXEYE XE, LYNXEYE XE-T and EIGER2 R 500K detectors. No upgrade required.
  - Not available for SSD-160 and LYNXEYE detectors

Please contact your local Bruker AXS office or contact us via info.baxs@bruker.com



**Dynamic Beam Optimization** 

- Origins of parasitic scattering in XRPD data
- Minimizing parasitic scattering: Dynamic Beam Optimization

Application examples

Instrument considerations

- Supported instrument configurations
- Instrument Upgrades

- 3 Things to remember
- Question & Answers

#### Dynamic Beam Optimization 3 Things to Remember



- 1. Dynamic beam optimization allows to acquire data virtually free of air, instrument, and sample support scatter
- Dynamic beam optimization significantly enhances lower limits of detection and enables accurate quantification of minor crystalline and amorphous phases
- 3. Dynamic beam optimization delivers unparalleled data quality for materials with low angle peaks (large d-spacings) such as clays, pharmaceuticals, zeolites, and porous framework materials

### Any Questions?



info.baxs@bruker.com Coming next:

"Sorry we won't see you at EPDIC. Join our digital luncheon!" May 25th, 1:30 to 3pm (CET)



Innovation with Integrity

© Copyright Bruker Corporation. All rights reserved.