

Optimize Your Refinery Processes with Elemental Analysis!

Welcome

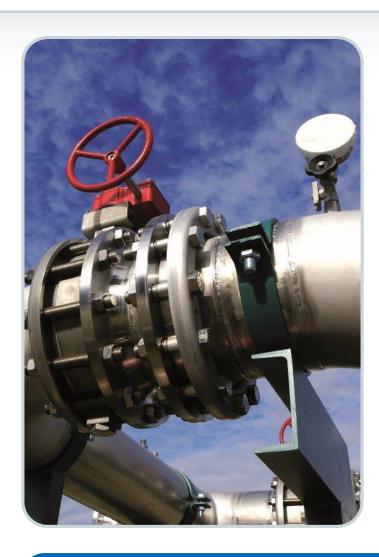
Frank PortalaProduct Manager XRF
Karlsruhe, Germany

Dr. Gülüm AlbutApplication Scientist XRF
Karlsruhe, Germany

Optimize Your Refinery Processes with Elemental Analysis!

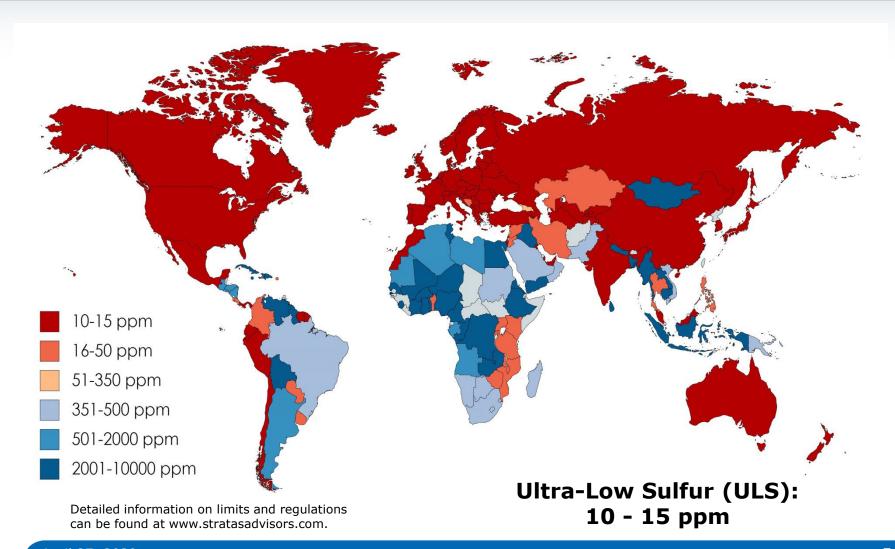
Today's Topics

- Today's Challenges in Refineries
- Why XRF (X-ray Fluorescence) Technology can Help in Refinery Processes
- Refinery Applications
- S2 POLAR Features & Benefits
- Summary



Today's Challenges in Refineries

Today's Challenges in Refineries



- Stronger environmental regulations for sulfur in automotive and marine fuels (ULS, IMO 2020,...)
- Removing S is very costly

Sulfur Limits for On-Road Diesel, 2020

Today's Challenges in Refineries

- Stronger environmental regulations for sulfur in automotive and marine fuels (ULS, IMO 2020,...)
- Removing S is very costly
- Current low crude oil demand and low oil price
- Huge impact on margin and profitability of refineries
- Results in even greater pressure to optimize processes, to minimize running costs and maximize product yield
- Without close process
 control, processes quickly
 run too expensive

How to Optimize Refinery Processes?

Close monitoring of elemental concentrations in

- raw materials,
- intermediates,
- process media,
- and final products.


With the right analytical tool that ideally should be:

- Easy to use
- Robust
- Short response time from sampling to result

Low costs per sample

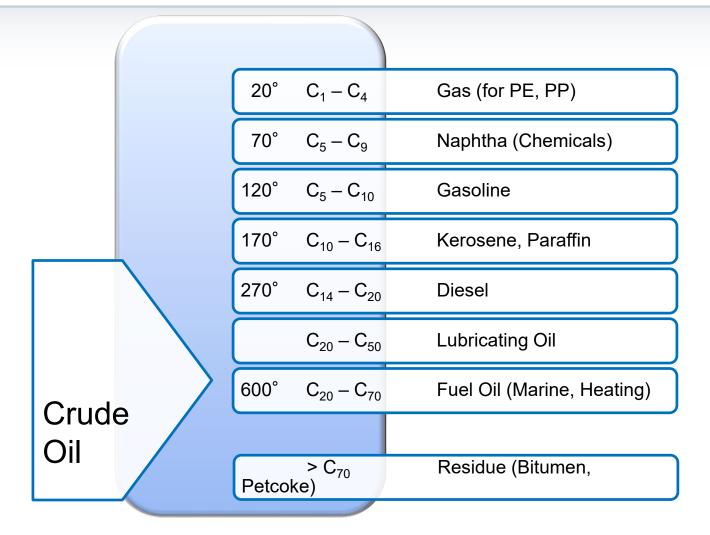
Why XRF (X-ray Fluorescence) Technology can Help in Refinery Processes

How does current Petrochemical Element Analysis often looks like?

- Atomic Absorption Spectrometry (AAS)
 - Sample must be prepared/diluted
 - Requires daily instrument calibration
 - Requires nebulizer adjustment for organic solvents
 - Requires gases for flame or graphite tubes
 - Usually single element analysis
- Inductively Coupled Plasma Spectrometry (ICP-OES)
 - Similar to AAS, requires daily calibration and re-calibration
 - Requires expensive Argon gas for plasma
 - Adjustment of plasma gas conditions
- UV/VIS Spectroscopy (UV)
 - Requires reagents for UV reaction

XRF (X-ray Fluorescence) Technology Robust and easy to use

- XRF is a robust, precise technique and very easy to use!
 - 1.) Prepare the sample cup
 - 2.) Fill the sample cup
 - Place the cup on the balance
 - Fill with approx. 7 g of sample
 - 3.) Load sample into the instrument
- Done! No dilution, no digestion!
- No daily calibration required!
- Standard liquid cups guarantee
 low costs per sample!



Refinery Applications

Oil Refinery Products

Refinery Applications (1)

Monitoring **sulfur** in all kind of process media such as:

- Crude oil feedstock
- Intermediate cracking products at different process stages
- Fuel blending or final products at various sulfur levels from heating, jet and marine fuel to Ultra-Low Sulfur (ULS) in automotive fuels (-> removing S is costly)
- Comply with standards (ASTM...)

Monitoring **sulfur** in fuels along the downstream supply chain at:

 Tank farms, pipelines, petrol stations, custom control at harbors, and service and inspection labs

Refinery Applications (2)

Monitoring further important **elements** in refinery processes such as:

- V, Ni, and Fe for protection of Fluid Catalytic Cracking (FCC) or hydrotreater units
- CI to minimize piping corrosion and to optimize desalter efficiency

Sulfur and Ultra-Low Sulfur (ULS) Petrochemical Sulfur Standards

Wavelength-dispersive XRF (WDXRF):

- ASTM D2622
- ISO 20884

Energy-dispersive XRF (EDXRF):

- ASTM D7220
- ISO 13032
- ASTM D4294
- ISO 20847
- ISO 8754

Sulfur and Ultra-Low Sulfur (ULS) Petrochemical Sulfur Standards

Wavelength-dispersive XRF (WDXRF):

- ASTM D2622 (3 ppm 4.6 %)
- **ISO 20884** (**5** 500 ppm)

Energy-dispersive XRF (EDXRF):

- ASTM D7220 (3 942 ppm)
- **ISO 13032** (8 50 ppm)
- **ASTM D4294** (16 ppm 5 %)
- **ISO 20847** (30 500 ppm)
- **ISO 8754** (300 ppm 5 %)

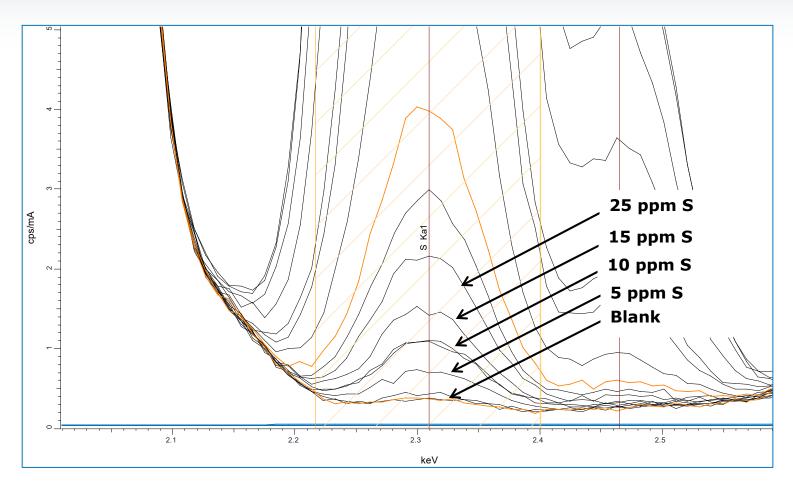
S2 POLAR

High Performance Benchtop EDXRF for Petro Market

S2 POLAR

ASTM D7220-12 (Reapproved: 2017)

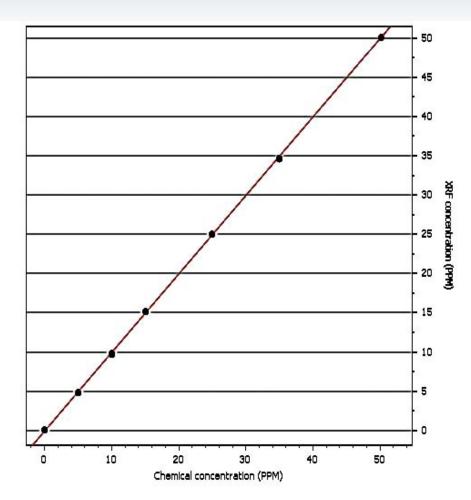
Designation: D7220 - 12


Standard Test Method for Sulfur in Automotive, Heating, and Jet Fuels by Monochromatic Energy Dispersive X-ray Fluorescence Spectrometry¹

- ASTM International (American Society for Testing and Materials)
- Covers determination of sulfur in gasoline, diesel, diesel/biodiesel blends, kerosene, and jet fuel by monochromatic EDXRF
- For Ultra-Low Sulfur (ULS) levels
- Scope: **3 ppm** 942 ppm S
- Defined repeatability (r) and reproducibility (R) limits have to be fulfilled

Single measurements (no duplicates required)

ASTM D7220 - ULS in Gasoline S2 POLAR

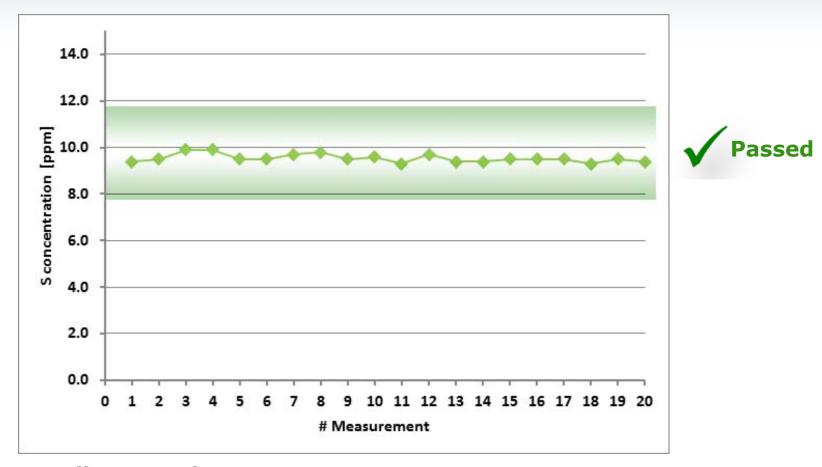


Clear separation of different sulfur levels, including very low levels

ASTM D7220 – S in Gasoline S2 POLAR

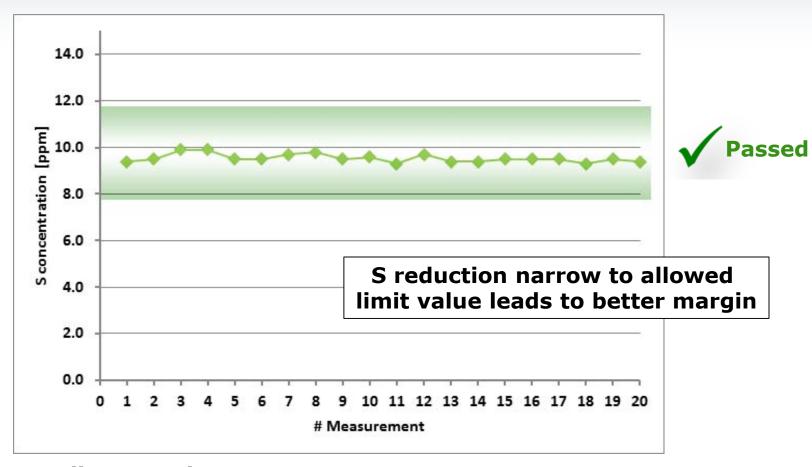
Excellent calibration curve for ultra-low sulfur in the range of **0 to 50 ppm S**

Ultra-Low Sulfur (ULS) – Repeatability S2 POLAR


# Measurement	S [ppm]				
1	10.1				
2	10.0				
3	10.2				
4	10.9				
5	10.4				
6	10.4				
7	10.3				
8	10.4				
9	10.1				
10	10.2				
Mean value	10.3				
Abs. std. dev.	0.24				
Rel. std. dev. [%]	2.34				

- 10 ppm S gasoline sample
- Excellent repeatability for very low sulfur concentrations
- Norm-compliant with ASTM D7220
- Scope of ASTM D7220:
 3 ppm to 942 ppm S in automotive fuels
- LLD: 0.7 ppm (300 s, with SampleCare[™] cup)

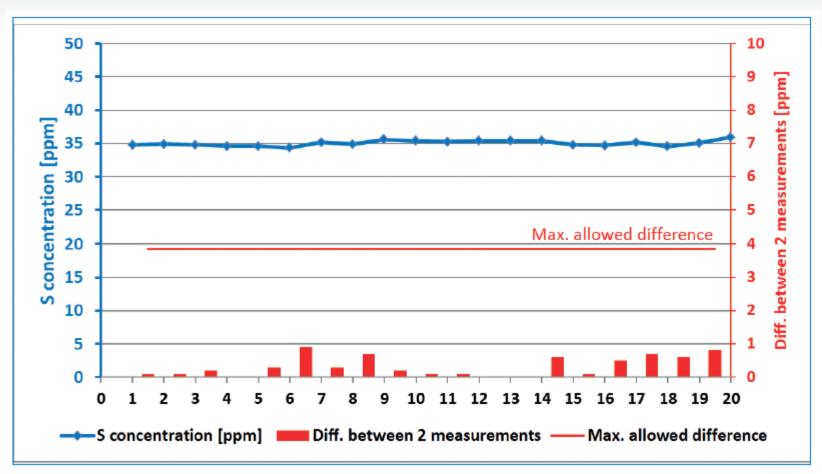
ASTM D7220 – Repeatability S2 POLAR



Gasoline sample: 9.8 ppm S

Accepted difference between 2 measurements: ± 2.0 ppm S

ASTM D7220 – Repeatability S2 POLAR



Gasoline sample: 9.8 ppm S

Accepted difference between 2 measurements: ±2.0 ppm S

ASTM D7220 – 35 ppm QC Sample S2 POLAR

Repeatability of a gasoline sample, according to ASTM D7220

ISO 13032

ISO 13032-12(2018)

Petroleum products –

Determination of low concentration of sulfur in automotive fuels – Energy-dispersive X-ray fluorescence spectrometric method (ISO 13032:2012)

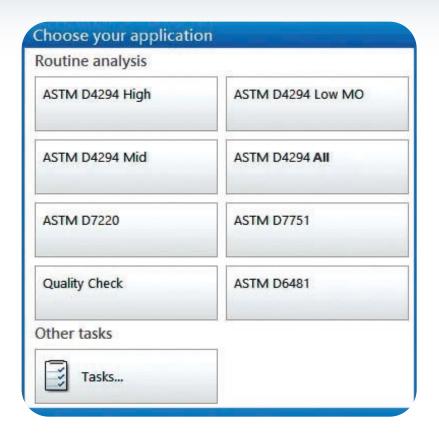
- Covers determination of low S in automotive fuels by EDXRF
- Scope: 8 ppm 50 ppm S
- Duplicates are required
- Defined repeatability (r) and reproducibility (R) limits have to be fulfilled
- Defined limit for Signal to Background ratio for 10 ppm S sample

ISO 13032 – Repeatability S2 POLAR

# Measurement	S [ppm]				
1	11.5				
2	11.2				
3	11.7				
4	11.1				
5	11.5				
6	11.4				
7	11.1				
8	11.3				
9	11.6				
10	11.3				
Mean value	11.4				
Abs. std. dev.	0.20				
Rel. std. dev. [%]	1.72				

- Gasoline sample
- Excellent repeatability for very low sulfur concentrations
- Defined limit for signal to background ratio easily fulfilled due to very low background of S2 POLAR
- Scope of ISO 13032:
 8 to 50 ppm S in automotive fuels
- Norm-compliant with ISO 13032

ASTM D4294-16


Designation: D4294 – 16^{£1}

Standard Test Method for Sulfur in Petroleum and Petroleum Products by Energy Dispersive X-ray Fluorescence Spectrometry¹

- Covers determination of sulfur in petroleum and petroleum products by EDXRF
- For fuel, diesel, unleaded gasoline, lubricating base oil, crude oil, and similar petroleum products
- Scope: **16 ppm** 4.6 % S
- 3 different concentration ranges:
 - 0 0.1 % S (0 1000 ppm) Low range
 - 0.1 1.0 % S Mid range
 - 1.0 5.0 % S High range
- Defined repeatability and accuracy limits, duplicates <100 ppm S

S2 POLAR – S for Refineries Ready-to-analyze 'One Button' Solutions

- Ready-to-analyze 'One Button' solutions
- Factory pre-calibrated methods
- Easy and straightforward to use
- Norm-compliance analysis immediately after installation
- Available for:
 - ASTM D7220
 - ASTM D4294
 - ASTM D7751
 - ASTM D6481

ASTM D2622-16

Designation: D2622 - 16

Standard Test Method for Sulfur in Petroleum Products by Wavelength Dispersive X-ray Fluorescence Spectrometry¹

- Covers determination of sulfur in petroleum products by WDXRF
- For petroleum products, diesel, gasoline, jet fuel, residual oil, lubricating base oil, crude oil, biodiesel
- Scope: **3 ppm** 4.6 % S
- 3 different concentration ranges:
 - 0 1000 ppm S Low range
 - 0.1 1.0 % S Mid range
 - 1.0 5.0 % S High range
- WDXRF S6 JAGUAR and S8 TIGER

Petrochemical Sulfur Standards Overview

	ASTM D2622	ISO 20884	ASTM D7220	ASTM D4294	ISO 13032	ASTM D5453
Applied technique	WDXRF	WDXRF	Mono- chromatic EDXRF	EDXRF	EDXRF	UV
S concen- tration range	3 ppm - 4.6 %	5 - 500 ppm	3 - 942 ppm	16 ppm - 5 %	8 - 50 ppm	1 - 1000 ppm
Calibration ranges	0 - 1000 ppm 0.1 - 1.0 % 1.0 - 5.0 %	0 - 60 ppm 60 - 500 ppm	0 - 50 ppm 50 - 1000 ppm	0 - 1000 ppm 0.1 - 1.0 % 1.0 - 5.0 %	0 - 50 ppm	0 - 10 ppm 5 - 100 ppm 100 - 1000 ppm
Scope	Petroleum products, diesel, gasoline, jet fuel, residual oil, lubricating base oil, crude oil, biodiesel	Automotive fuels, diesel, gasoline, biodiesel	Automotive fuels, heating and jet fuels, including biodiesel blends	Petroleum products, diesel, gasoline, jet fuel, residual oil, lubricating base oil, crude oil, biodiesel	Automotive fuels, diesel, gasoline, biodiesel	Total sulfur in light hydro-carbons, spark ignition engine fuel, diesel, engine oil
Bruker XRF norm compliance	S6 JAGUAR, S8 TIGER	S6 JAGUAR, S8 TIGER	S2 POLAR	S2 POLAR, S2 PUMA	S2 POLAR	

It's not all about Sulfur...

More Refinery Applications

Fluid Catalytic Cracking Units

Monitoring elements important for the **protection** and **efficiency improvement** of Fluid Catalytic Cracking (**FCC**) or hydrotreater units such as:

- Lower levels of vanadium
 (V) and nickel (Ni), as these elements deactivate the catalysts
- Iron (Fe) as corrosion byproduct to minimize impact on FCC, can lead to pump and exchanger fouling

ASTM D8252-19

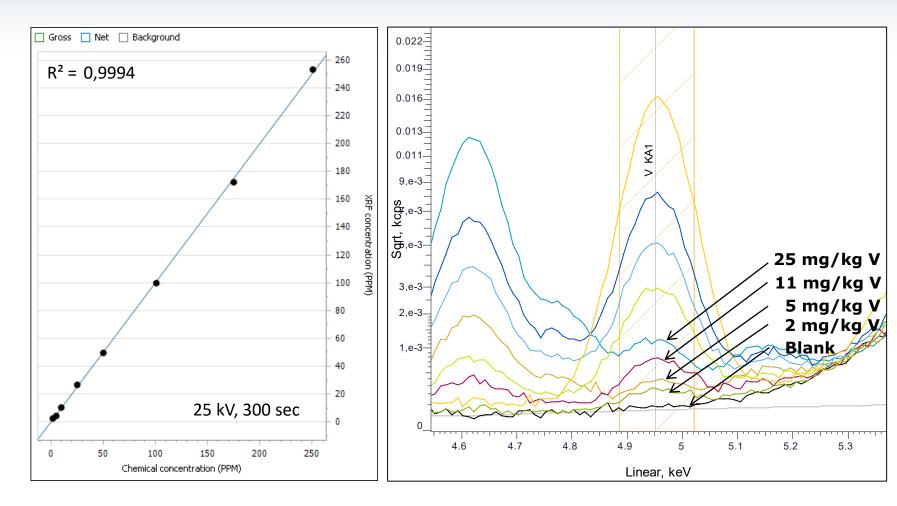
Designation: D8252 - 19^{£1}

Standard Test Method for Vanadium and Nickel in Crude and Residual Oil by X-ray Spectrometry¹

- Covers determination of total vanadium and nickel in crude and residual oil by XRF
- Vanadium and nickel, along with sulfur, occur naturally in crude oil, and their concentrations vary depending on the geographical region of the oil deposits
- Nickel and vanadium are critical due to their impact on refining process efficiency, contamination risk of the cracking catalysts
- and pipelines have set specifications for Ni and V in their common stream sweet crude

ASTM D8252-19

Designation: D8252 - 19^{£1}


Standard Test Method for Vanadium and Nickel in Crude and Residual Oil by X-ray Spectrometry¹

- These elements rapidly deactivate the catalysts that are used in the catalytic cracker (FCC) and hydrotreater units,
- Might catalyze undesirable side reactions (such as carbonization), and devalue any residual material in which it may be isolated (such as coke)
- Defined repeatability (r) and reproducibility (R) limits have to be fulfilled for 1.9 to 50 mg/kg V and 2.2 to 50 mg/kg Ni

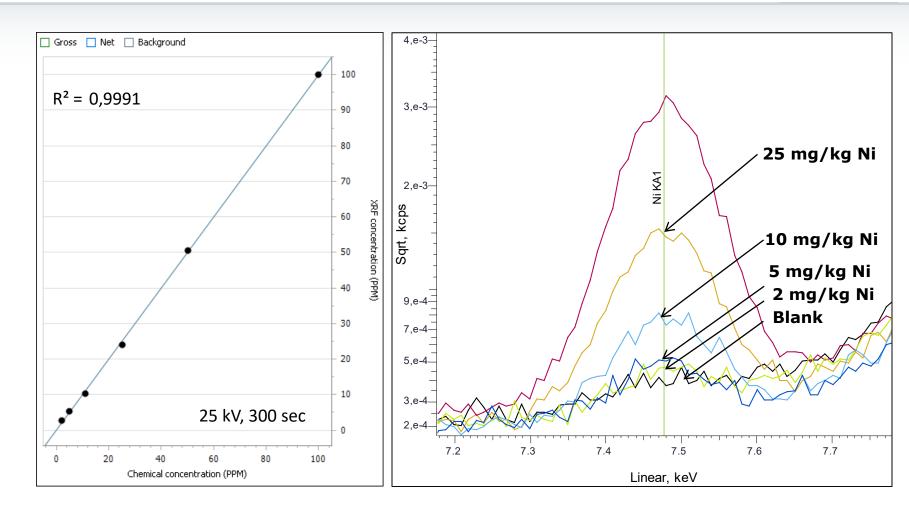
Single measurements (no duplicates required)

Vanadium in Crude Oil – 0–100 mg/kg S2 POLAR

Clear separation of different V levels, including low levels

ASTM D8252 – V Repeatability S2 POLAR

	V [mg/kg]
Rep 01	54.2
Rep 02	53.8
Rep 03	54.6
Rep 04	54.6
Rep 05	55.1
Rep 06	55.3
Rep 07	54.5
Rep 08	54.4
Rep 09	55.0
Rep 10	55.0
Mean	54.7
Abs. Std. Dev.	0.43
Rel. Std. Dev. [%]	0.79


- 55 mg/kg V oil standard
- Excellent repeatability for vanadium
- Norm-compliant with ASTM D8252

Accepted difference between 2 measurements: ±3.5 mg/kg V

Nickel in Crude Oil – 0 – 100 mg/kg Ni S2 POLAR

Clear separation of different Ni levels, including low levels

ASTM D8252 – Ni Repeatability S2 POLAR

	Ni [mg/kg]
Rep 01	51.6
Rep 02	50.3
Rep 03	50.8
Rep 04	51.0
Rep 05	50.0
Rep 06	50.7
Rep 07	50.9
Rep 08	51.3
Rep 09	50.7
Rep 10	51.1
Mean	50.8
Abs. Std. Dev.	0.44
Rel. Std. Dev. [%]	0.86

- 50 mg/kg Ni oil standard
- Excellent repeatability for nickel
- Norm-compliant with ASTM D8252

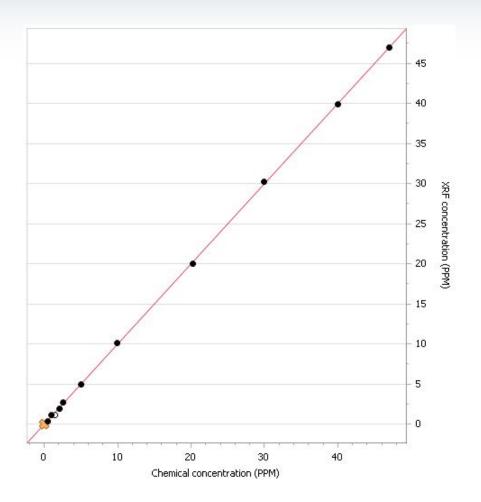
Accepted difference between 2 measurements: ±3.6 mg/kg Ni

Corrosion of Piping/ Desalter Optimization

Monitoring lower levels of chlorine (CI)

- to minimize impact of corrosion of piping (due to formation of corrosive hydrochloric acid at higher temperatures)
- to optimize desalter performance
 - Desalter used as first step to remove salt from crude
 - Remaining salt could cause water hydrolysis -> HCl

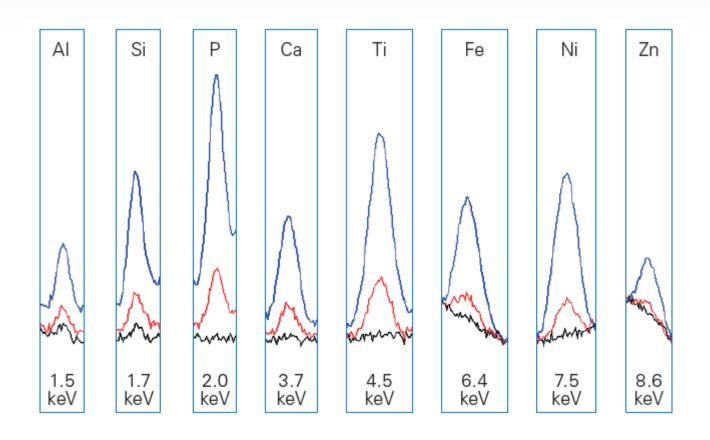
ASTM D4929-17


Designation: D4929 - 17

Standard Test Method for Determination of Organic Chloride Content in Crude Oil¹

- Covers determination of organic chloride in crude oil by XRF
- Organic chlorides break down during fractionation and produce hydrochloric acid (HCl), which has a corrosive effect
- Organic chlorides naturally are not present in crude oils and usually result from cleaning operations at production sites, pipelines, or tanks
- Several pipelines have set specification limits for organic chlorides and trade contracts often specify that no organic chloride is present in the crude oil
- Requires some sample preparation prior to Cl determination

ASTM D4929 - Chlorine in Crude Oil S2 POLAR

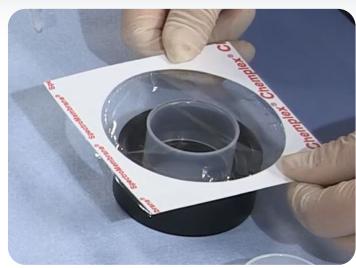

- Analysis of low levels of organic chlorine for corrosion monitoring and desalter control
- 1 to 100 ppm Cl
- Norm-compliant with ASTM D4929

Excellent accuracy also at low CI concentrations

Multi-element Capability S2 POLAR

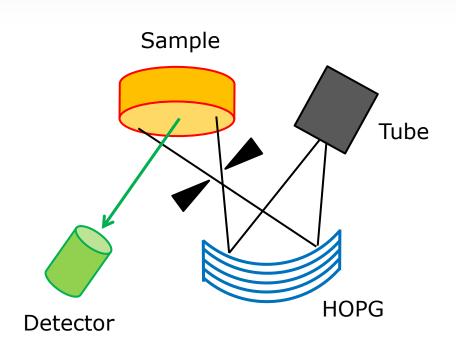
Selected elements of overlaid multi-element oil standards (Black: blank sample, red: 10 ppm, blue: 100 ppm)

SampleCare[™] Cup S2 POLAR

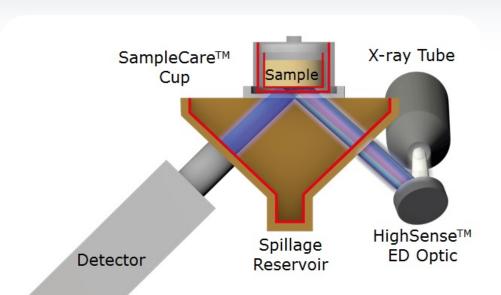

Liquid sample cup (\emptyset 40 mm) SampleCareTM cup (\emptyset 51 mm)

Liquid Cup Preparation Tool S2 POLAR

- Tool for easy and efficient preparation of liquid cups
- Used for sample liquid cups (Ø 40 mm) and SampleCare cups (Ø 51 mm)
- Easy and straightforward!


S2 POLAR

HighSense™ Beam Path S2 POLAR



- Polarizing HighSenseTM beam path
- HighSense[™] ULS SDD
- Powerful 50 W, 50 kV
- Perfect excitation conditions for petrochemical products (fuels, oils, polymers = light matrices)
- Reduced background due to polarization
- Results in excellent LLDs

HOPG: Highly oriented pyrolytic graphite

SampleCare[™] Technology S2 POLAR

- SampleCare[™] cup prevents leakages of liquid samples
- Protects important system components
- Measurement chamber with large spillage reservoir
- S2 POLAR SampleCare™
 Technology guarantees
 highest instrument uptime
- Important for high throughput industrial labs

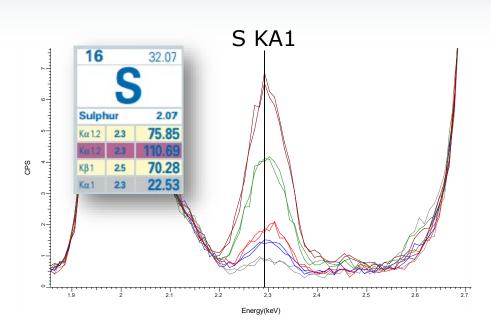
Small Footprint S2 POLAR

- Very small, compact footprint
- For space-saving analysis in labs
- Also important for on-site process control with limited space in
 - refineries
 - tank farms
 - oil terminals

TouchControl[™] S2 POLAR

- Large touchscreen user interface
- Intuitive and easy-to-use
- 'One Button' solutions
- Enable users with minimal training to run routine samples
- Multilingual: English, German, French, Spanish, Portuguese, Italian, Russian, Chinese, Japanese

German Type Approval / NF C 74-100 S2 POLAR


1678 Pioneer Road, Salt Lake City Utah 84104, U.S.A.

- German Type Approval and Vollschutz according to BfS RöV
- Approval for France (NF C 74-100) and Spain
 - Fully radiation-protected system
- High voltage **30 kV max.** (optionally), simplify regulatory efforts in certain countries:
 - France/Belgium/ Luxembourg
 - Italy/Austria
 - Taiwan

Refinery Applications S2 POLAR

ASO DIN

- Covers Ultra-Low Sulfur (ULS) in fuels up to % S in crude oil
- Norm-compliant sulfur analysis:
 - ASTM D7220
 - ISO 13032
 - ASTM D4294
 - ISO 20847
 - ISO 8754
 - IP 336, 496, 532, JIS K2541-4
 - ASTM D8252: V, Ni + Fe
 - ASTM D4929: Cl

BRUKER's Strength Complete Product Range for Refineries

S8 TIGER

For high demanding central labs

S6 JAGUAR

- For petrochemical labs
- E.g. ASTM D2622 and ASTM D6443

S2 POLAR

- For petro applications, incl. Ultra-Low Sulfur
- Multi-element refinery and oil applications
- Small and compact, along distribution channel

S2 PUMA

For wear metals in lubricating oils

ALPHA FT-IR

For biodiesel (FAME) analysis

S2 POLAR for Refineries (1)

One instrument does it all for refineries:

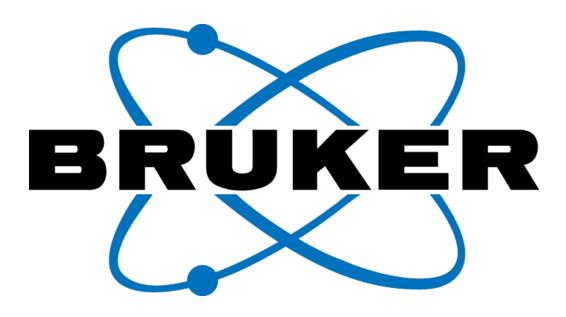
- From Ultra-Low Sulfur (**ULS**)
 in fuels to % in crudes
- S reduction narrow to allowed limit value leads to better margin
- Norm-compliant to international standards ASTM D7220, D4294, D4929, D8252, ISO 13032,...

S2 POLAR for Refineries (2)

Advantages of monitoring:

- Ni, V can damage the Fluid Catalytic Cracking (FCC) and hydrotreater unit
- Fe as corrosion byproduct has a negative impact at FCC
- Cl causes HCl formation resulting in piping corrosion
- The S2 POLAR combines excellent analytical performance in a single powerful benchtop instrument.

S2 POLAR for Refineries



Questions

Thank you!

Innovation with Integrity