
pXRF Solution for Geochemistry, Mining and Exploration

Dipl.Min. Alexander Seyfarth, Dr. Bjorn Klaue Johannesburg South Africa IMA 2014 Sept 3rd 2014

Analytical Instruments for the Geoscience and Mining Segment....

BRUKER provides a wide range of instruments for the Minerals and Mining Industry Elemental analysis

- XRF (ED XRF, WD XRF, TXRF, HH XRF, uXRF, EDS)
- Combustion Analysis (C, N, O, H)
- ICP MS
- OES (Arc & Spark) for solid metal analysis

Compound analysis

- XRD
- GC (and GC-MS) (gas)
- IR (FT-IR and NIR)
- Raman (pRaman, HH Raman)

Other

- Micro CT
- SCD
- AFM
- Tribology

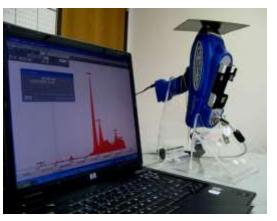
HH-XRF

ED-XRF S2 Ranger

WD-XRF S8 Tiger

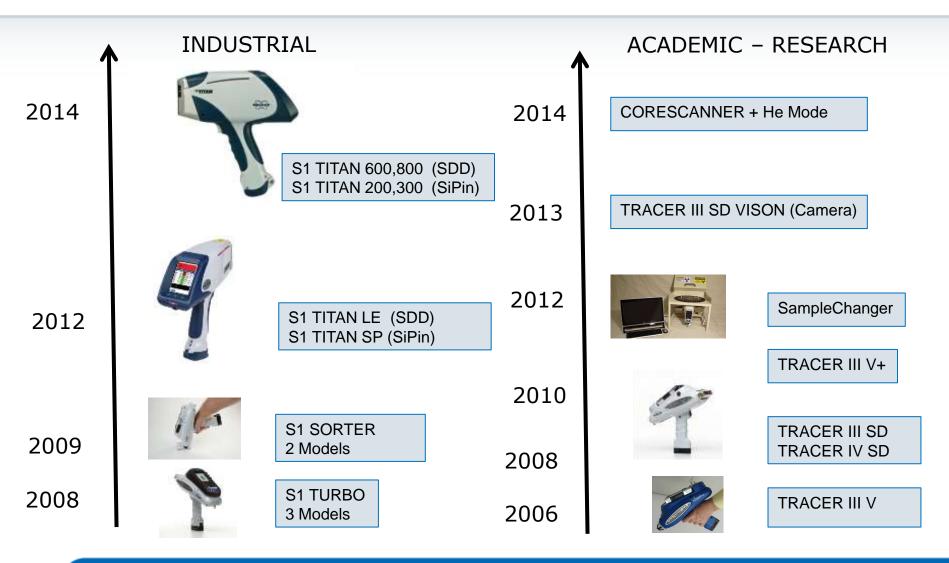
XRD-D2 Phaser

We started with metals as well, only with the hardest one first... 2006...

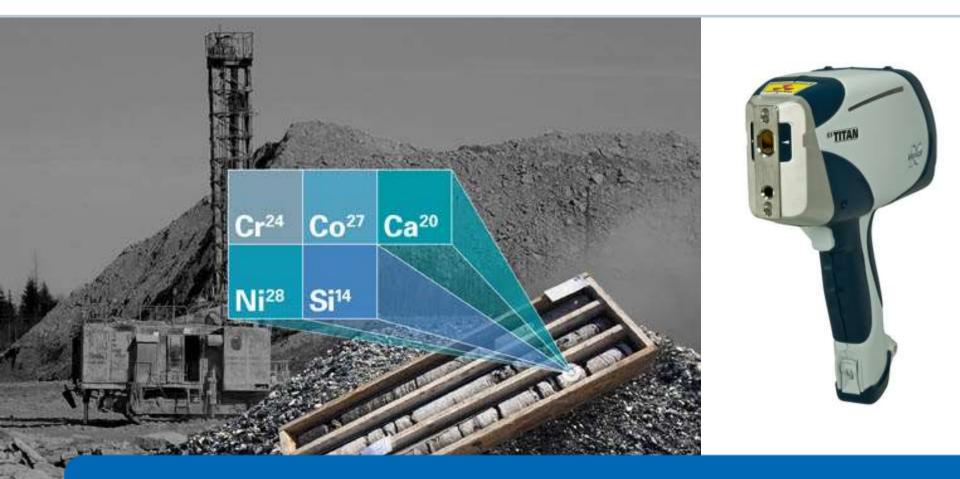


 Development of HH XRF in conjunction with NASA for PMI on shuttle components and other materials for space exploration and travel (TRACER III V)

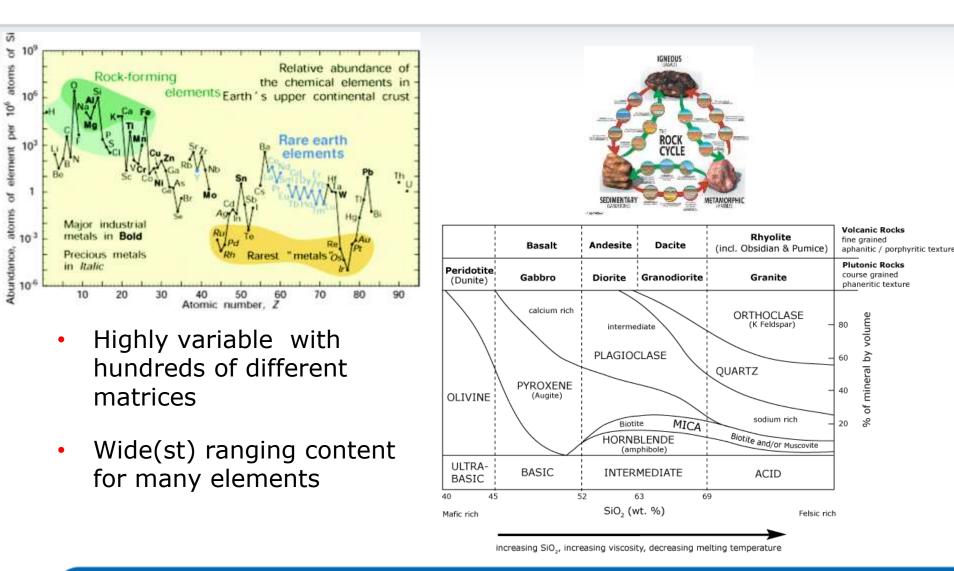
Jan 2006: The Space Foundation announced today that KeyMaster X-ray fluorescence (XRF) is officially recognized as a Certified Space Technology (tm). KeyMaster Technologies, Inc., of Kennewick, Wash., developed the XRF analyzer to perform on-the-spot chemical analyses. NASA enhanced and used it on Space Shuttle Discovery to determine the composition of aluminum alloy parts to an accuracy of four decimal places.



From the OEM to a full line of industrial and academic Instruments

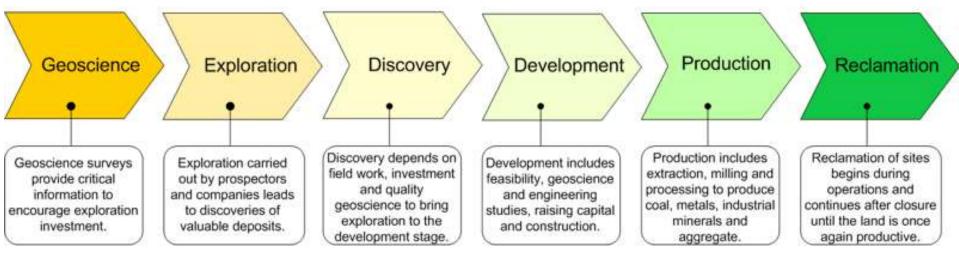


pXRF Solution for Geochemistry, Mining and Exploration



Dipl.Min. Alexander Seyfarth, Dr. Bjorn Klaue Johannesburg South Africa IMA 2014 Sept 3rd 2014

Variability of Geo materials

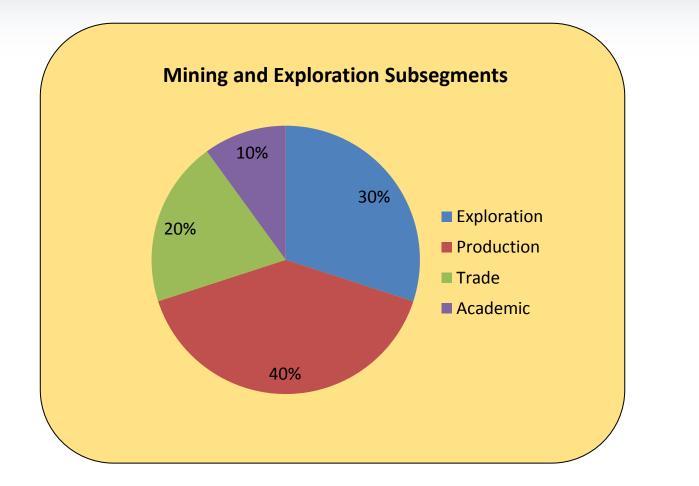


XRF in Mineral Applications Where?

- Academic / Research segment (Geoscience, some Exploration "mapping")
- Prospection / Reclamation segment
- Development / Production segment

Handheld XRF can be used in all the phases of mining.

HH XRF in Mining Applications Why?


- Key Selling Points/Drivers for HH XRF:
 - Logistics, particularly remote locations
 - Low cost of analysis & instrumentation
 - Low qualification of operators

Overall HH XRF Geo Market Application Distribution

Pay Back of pXRF What Literature has to say...

- The use of this onsite FPXRF method has been objectively demonstrated to be three times more cost-effective than conventional methods of collecting judgmental samples for subsequent laboratory analysis (Taylor et al., 2004). The real value goes beyond this cost savings. Onsite use of the FPXRF allows an accurate appraisal of a property, ore grade, drill cuttings, cores and concentrates in real time when and where correct decisions are needed.
- Glanzman, Kloos in "Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration" edited by B. Milkereit, 2007, p. 291-301
- Taylor, P.D, Ramsey, M.H. and Potts, P.J., 2004, Balancing Measurement Uncertainty against Financial Benefits: Comparison of In Situ and Ex Situ Analysis of Contaminated Land: Environ. Sci. & Tech., 38, 6824-6831.

Handheld XRF Applications Academic/Research

- Typical Geochemical field or lab based Analysis for traces or majors (similar to the "big" XRF) using either powders or pellets
- Calibrations can be factory based and can be extended by customer adding own samples or are FULLY customer made using a wide range of preparations or even direct measurements
 - Generic (Powder/Pellet) Applications: Canada Geo Survey (general mapping), University of Western Ontario (search of impact structures)
 - Direct Measurements: Basalt direct rockface/outcrop measurement of s for mapping different eruptions (WSU) Obsidian, Chert et al for sourcing not via Fingerprinting but traceable to international samples (E.g. MURR)
 - Liquid Measurements: Analysis of brines and Mine discharges
 - Filter Measurements: Airquality Filter , Ion Exchanger Filters

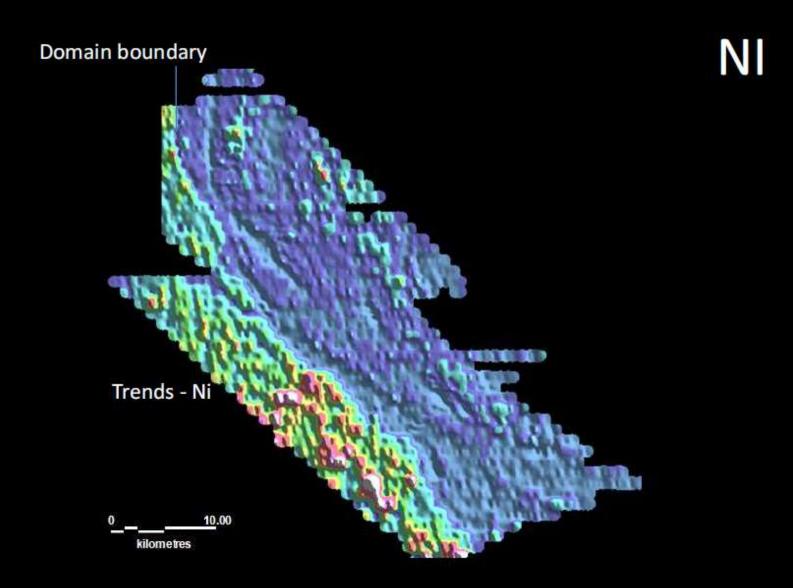
Having made your own Calibration and showing all details on it Allow ORIGINAL PUBLICATIONS in peer reviewed Journals

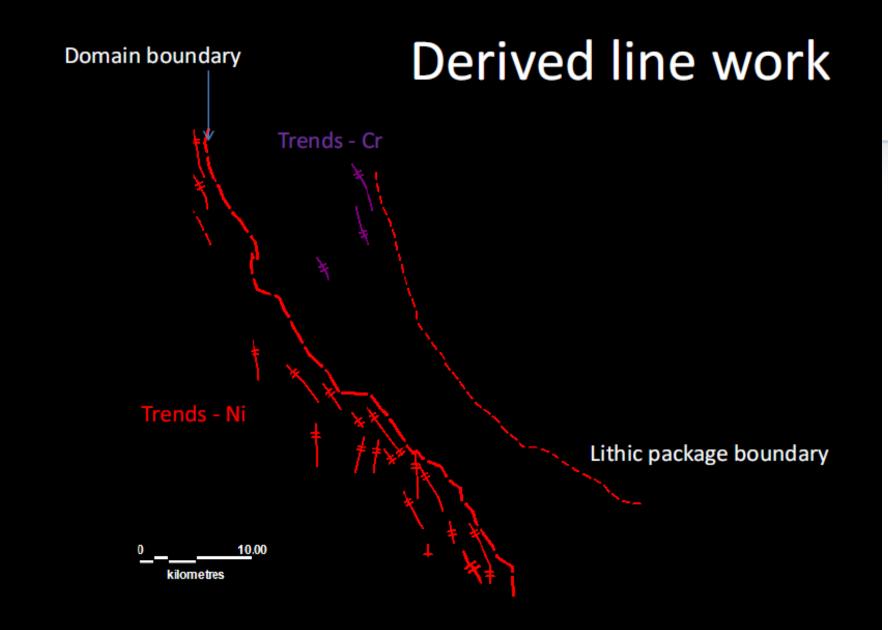
IMA 2014

Handheld XRF Applications Exploration

The pXRF analyzes the **geochemistry** of soil, sediment, and drill core samples in the field.

- Object is to capture spatially resolved data and look for concentration "differences" or trends
- This helps to guide and expedite ore exploration and research projects
- Mostly non direct on pulp or powdered samples

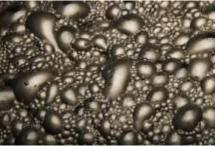



Geochemical Mapping

There is a LOT of detail and information in each element

Dr Nigel W Brand

26th IAGS: Rotorua, NZ Portable XRF (*pXRF*) in mineral exploration: state of the art in 2013: Workshop 17th November 2013



Handheld XRF Applications Operations/Process (1)

- Floatation/processing trouble shooting
 - New or "repaired" circuits can be brought online faster with onsite pXRF analysis
 - Chemicals dosage checks
- Grinding control / Grinding tests
- Tailings check
- Predictive Maintenance
- Positive Material Identification
 - E.g. is the wear resistant material ordered really "wear" resistant or a knock off

Handheld XRF Applications Operations/Process (2)

- Grade delineation for production area optimization
- Blast Hole analysis: Quality data from drill powder
 - Faster data with ability to "map"
 - pXRF link to laboratory data with data reprocessing
- Lab on a Rig

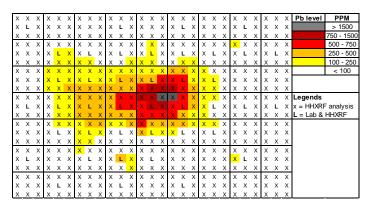
Handheld XRF Applications Industrial Minerals/Cement/Gypsum

- Limestone, Calcium carbonate (CaCO3) is one of the most versatile minerals found in the earth's crust.
 Physical properties and low processing cost makes it the most widely used filler material.
- Handheld XRF can be used to measure Calcium carbonate composition directly from rock or from quarry. This information can be used to effectively control mining and excavation process.
- Sand and Feldspar grade and Fe control

Gypsum and Cement

Handheld XRF Applications Traders, Inspection

- Getting "reliable" data for purchase from "artisanal" mining
- Variable Sample presentation and ranges from concentrate to industrial mineral
- "tuned" to the commercial lab data
- "conflict" source identification (or obfuscation)



Handheld XRF Applications Mine Site Reclamation

- Reclamation and clean-up of abandoned mining sites requires rapid field decisions to be able to coordinate the process effectively.
- pXRF provides a fast and inexpensive approach to site characterization for identifying heavy element pollutants in soil.
- By storing GPS coordinates with the data acquired ON the unit it is possible to quickly map the contaminated area (e.g. Google maps) or import it in any GIS

CAMIRO Project Demystifying pXRF Procedures and Capabilities

CAMIRO I and II 2010/2011

- 10E01/11 E01 Quality Control Assessment of Portable XRF Analysers: Development of Standard Operating Procedures, Performance on Variable Media and Recommended Uses
- Investigators: Gwendy Hall (Consultant), technical assistant, commercial laboratories (including ALS, SGS),
- Participation of PXRF manufacturers: Bruker. Olympus InnovX, Thermo Fisher Scientific
- Need for set of rock standards and procedures to evaluate and test variability of data from hand-held instruments.
- Phase 1: variations in element data from certified reference material powders (Startup October 2010; Completed June 2011)
- Phase 2: variations in element data in rocks, core, soils, tills and water saturated soils vs. powders. (Startup January 2012; Completed August 2012)

Performance Comparison of Portable XRF Instruments: A Mineral Exploration Prospective

Presented by Dr Nigel Brand

26th IAGS: Rotorua, NZ Session 8A: Sampling & Real Time Analysis 19th November 2013

Some Lessons Learned from CAMIRO and pXRFS Benchmark

- All pXRF follow the laws of physics with respect to sample homogeneity: The analyzed layer and grain size is affected by the mineralogy and chemistry. With decent samples you CAN get decent results
 - Samples should to be prepared as FINE powder and PE (e.g. PROLEN[™]) foil should be used to enable light element analysis
- High Variability between the vendors installed "black box" application due to different "design" approaches
- "PRECISE YET INACCURATE"
- High Variability between Instruments: "INDIVIDUAL & UNIQUE"
- Vendor Difference in sensitivity (due to design approach) and selectivity

GEO Instrument Capabilities Hardware:

- All major vendors use high end Silicon Drift Detectors of varying sizes (size does ONLY matter for the sensitivity for light elements)
- Geo application require a higher resolution than alloy applications (the lower the eV number the better) BUT it is a function of count rate and therefore needs to be seen in context
- Optical Coupling e.g. distance from sample to detector determines sensitivity especially for light elements: It also affects power settings and "emissions".
- Most units run now on 50 kV: Which targets are used and which applications are available on the target
- Check for moving components which can get exposed to "sample" can cause breakdowns and require maintenance
- Protection against sample ingress, which can cause detector breakages needs to seen in context with analytical requirement

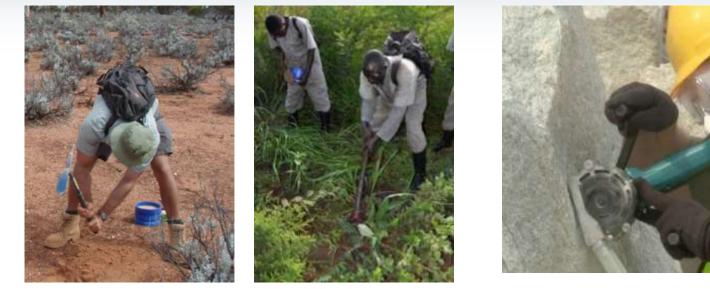
GEO Instrument Capabilities Software

- How is unit standardized (Gain control) ?
- GUI suitable for designated user group/ language?
- Different Levels of access: Who can do what?
- Data integrity: How is data stored and what is stored with the data?
- Reporting and data transfer options
- Can data be recalculated?
- Results display with Analytical Error , Spectrum access
- Connectivity (BT,WIFI,USB)
- Customization: How can a method be customized?
- Calibration: Can a user calibrate and if so how and with what options....

GEO Instrument Capabilities Calibrations / Applications

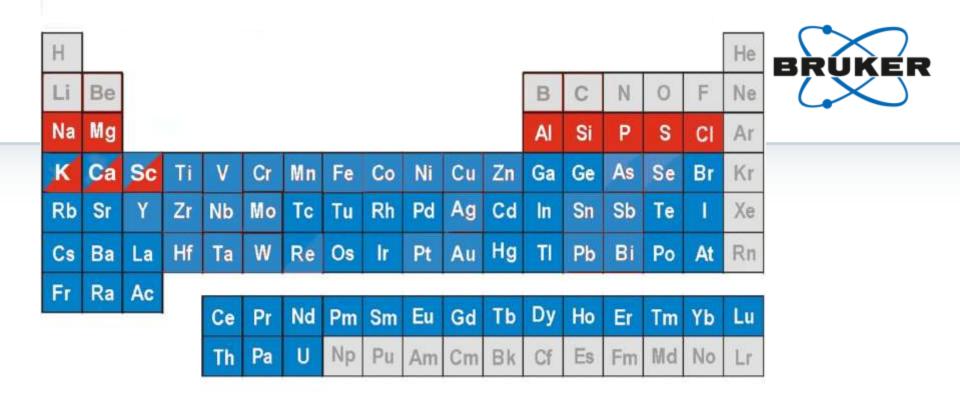
- What Calibrations/Apps are available?
- How many different beams / phases are being used?
- What is the recommended timing to asses throughput?
- Which elements and ranges are covered?
- LOD information based on which matrix
- What is the App designed for (exploration, grade control)?
- What is the default preparation?
- How can the Application be modified ?
- Ability to making your "own" ?
- Ability to get custom applications on in type materials?

What is the biggest problem for pXRF?


SAMPLING and SAMPLE

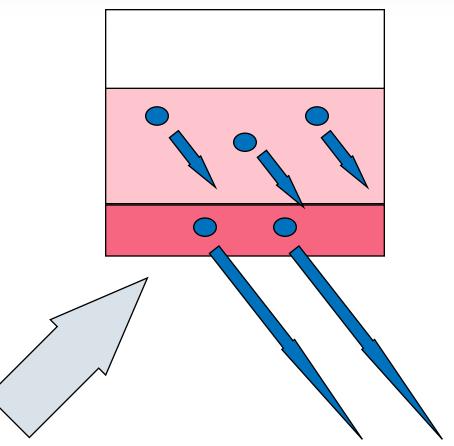
Sampling and Sample Preparation ... 90% of YOUR success





Sampling Considerations

- Heterogeneity
- Grain size
- Moisture content
- Measurement depth
- Sample bag and film material
- Sample Presentation



Transmitted	Air ~10%	Air > 50%		Air > 90%			Kapton >90%		
Line	1 kV	2 kV	3 kV	4 kV	5 kV	6 kV	7-10 kV	10-20 kV	20-30 kV
Ka	Mg, Al, Si	P, S, Cl		Ca, Ti	V, Cr	Mn	Fe, Co, Ni, Cu, Zn	Sr, Y, Zr, Nb, Mo	Ag, Cd, Sn, Sb
La		Zr, Nb, Mo	Ag, Cd, Sn, Sb				Hf, Ta, W, Au, Hg	Pb, Bi,	

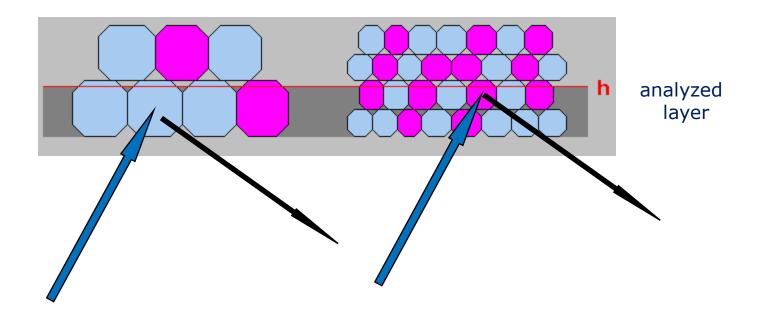
Analyzed Layer of a Sample

No excitation within the inner (upper) part of the sample

The lower parts (layers) of the sample can be excited by short wavelengths, but emitted radiation will be absorbed within the sample

Fluorescence radiation to be measured comes from a layer near the sample surface

Saturation Depths in Different Matrices


Line	Energy	Graphite	Glass	Iron	Lead	
Cd KA1	23.17 keV	14.46 cm	8.20 mm	0.70 mm	77.30 μm	
Mo KA1	17.48	6.06	3.60	0.31	36.70	
Cu KA1	8.05	5.51 mm	0.38	36.40 μm	20.00	
Ni KA1	7.48	4.39	0.31	29.80	16.60	
Fe KA1	6.40	2.72	0.20	* 164.00	11.10	
Cr KA1	5.41	1.62	0.12	104.00	7.23	
S KA1	2.31	1160 μm	14.80 µm	10.10	4.83	
Mg KA1	1.25	20.00	7.08	1.92	1.13	
F KA1	0.68	3.70	1.71	0.36	0.26	
N KA1	0.39	0.83	1.11	0.08	0.07	
C KA1	0.28	* 13.60	0.42	0.03	0.03	
B KA1	0.18	4.19	0.13	0.01	0.01	

 $0.01 \,\mu\text{m} = 10 \,\text{nm} = 100 \,\text{\AA}$

atom radius: 0.5 - 3 Å

Particle Size Effects of Heterogeneous Powder Samples

US BRUKER

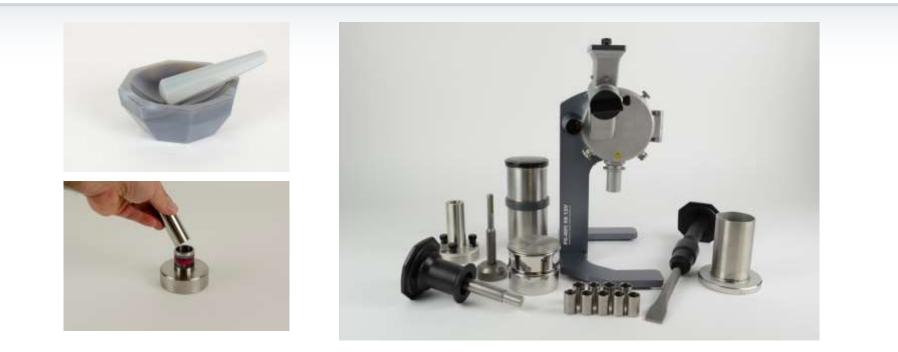
Particle Size Effects of Heterogeneous Powder Samples

Compound	Line	Concentration [%]	Energy [keV]	Layer Thickness [µm]
Fe2O3	Fe KA1	0.722	6.40	174
MnO	Mn KA1	0.016	5.89	139
TiO2	Ti KA1	0.016	4.51	66
CaO	Ca KA1	30.12	3.69	104
K2O	K KA1	0.103	3.31	77
SO3	S KA1	0.000	2.31	27
P2O5	P KA1	0.004	2.01	19
SiO2	Si KA1	1.130	1.74	13
Al2O3	Al KA1	0.277	1.49	8
MgO	Mg KA1	21.03	1.25	7
Na2O	Na KA1	0.029	1.04	4
CO2		46.37		

Thickness of the sample from which 90% of the measured intensity is derived

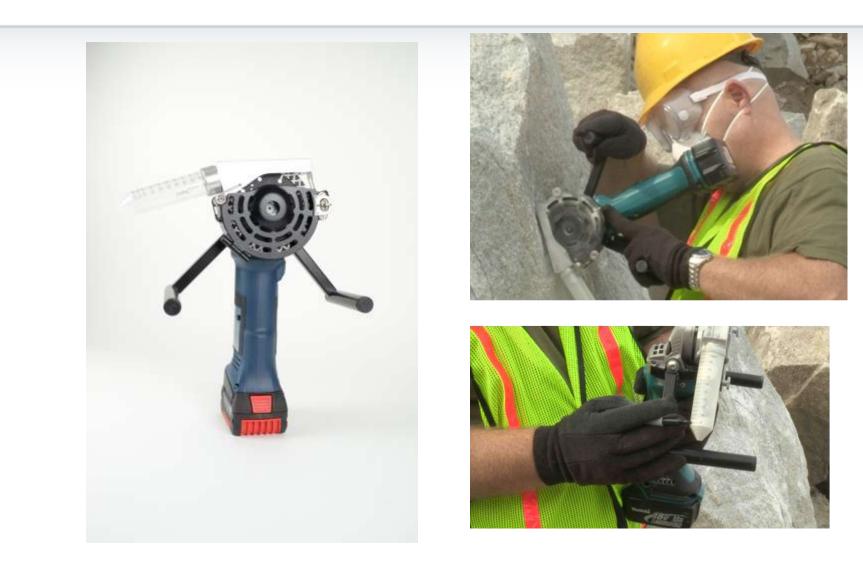
NBS 88b Dolomite

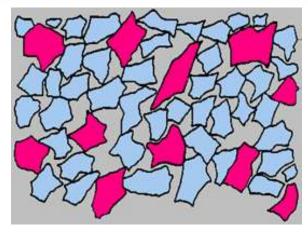
Pressed pellet without binder


Especially for the lines of light elements,

average grain size \approx layer thickness

(typically grain sizes vary between : $20 - 200 \,\mu\text{m}$)


Grinding accessories... Field


Angle Grinder for direct rock face sampling

Preparation as Loose Powder

- Powder sample is placed into a liquid sample cell with a suitable window and measured
- Particles have air gaps between them
- Arrangement of particles and air gaps is not reproducible
- Suitable when analyzed layer depth is very large (energy of line is high)
 - Example: Fe KA1

Analysis of Prepared Samples

BRUKER

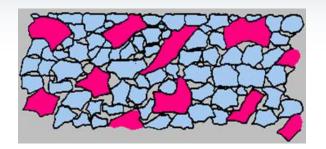
- Most accurate results are always achieved by uniformly homogenizing the samples and preparing them for sample cup analysis.
- Particle size, sample homogeneity, sample moisture and sample thickness are factors which may affect instrument accuracy.
- Grind to less than 75 um or < 200 mesh
- 4µm Prolene film should be used

Different sample cups

1530 cup with 1630 lid 31mm/23mm/24mm

Simple plastic bags (checked for contamination) are also good sample containers. Recommended sample bag is thin freezer bag – type LD-PE plastic bag. Paper bags are also possible

- Samples can be measured directly through the bag. Notice, that measurement through the sample bag may effect on results depending on measured elements and thickness and material of the bag.
- Light element analysis is not possible through the sample bag sample bag material will absorb the signal of light elements (Mg, Al, Si, P, S, Ca, K, Ti, V).
- Depending on the material and thickness of the sample bag, Cr is generally the lightest element that can be measured through a sample bag.
- Sample thickness should be min. 1cm (1/2").
- If sample is non-homogeneous, several measurements should be made for averaging.

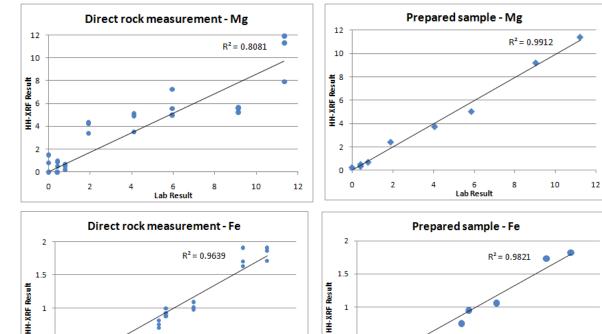


Preparation as Pressed Pellet

- Powder is compacted under high pressure
 - Typical pressure is 5 to 30 tons
 - Typical holding time is 10 to 30 seconds
- Makes arrangement of particles and air gaps very reproducible
- Samples are typically pressed into aluminum cups
 - Provide support for samples
- Alternatively samples can be pressed onto a support material
 - Like Cellulose or Boric Acid
- Samples may need the addition of binder to aid in forming a strong finished pellet

Direct rock measurement vs measurement of prepared sample

0.5


0

0

- Limestone rock samples were first measured directly with HHXRF.
- Samples were prepared and analyzed with laboratory WDXRF and with handheld XRF
- Results demonstrate challenge of the direct rock measurement.

2

0.5

0

0.5

1

Lab Result

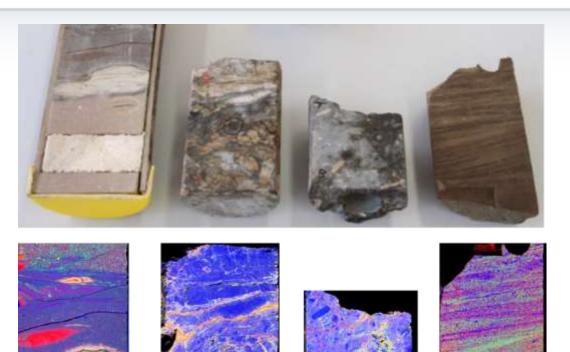
1.5

0.5

1

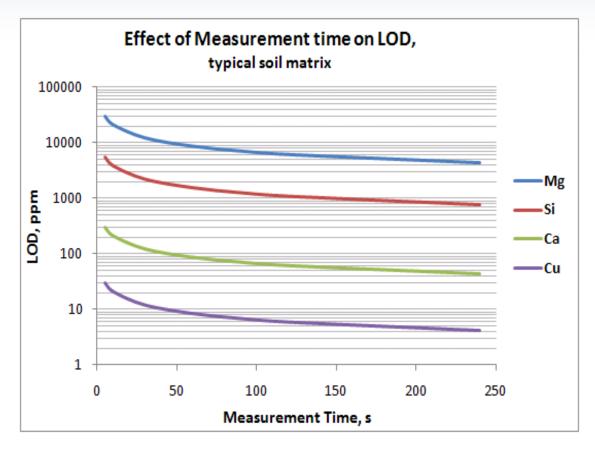
Lab Result

1.5


2

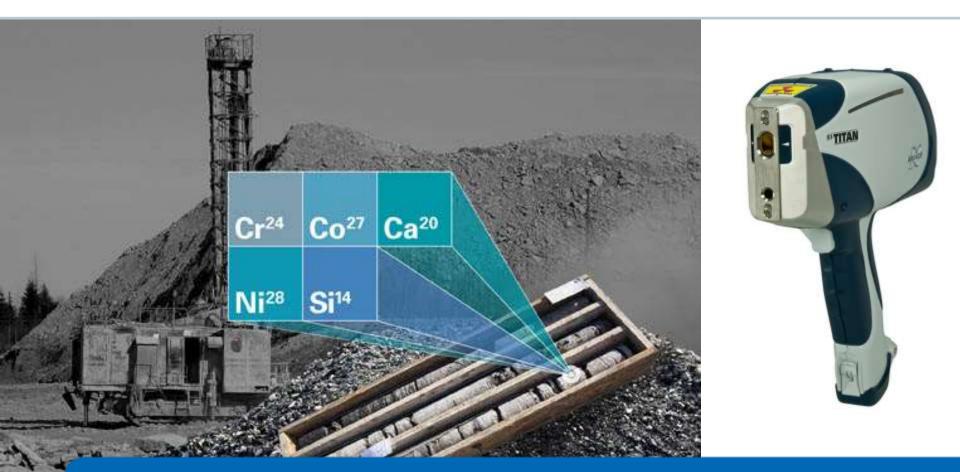
Example: Elemental distribution of drill cores

- Handheld XRF can be effectively used for drill core analysis.
- Quantitative measurement directly from the drill core surface is possible but averaging of multiple measurements is typically required.


TRACER series

M4 TORNADO

Light element Lower limit of Detection (LOD)



- LOD is the estimate of the smallest concentration which can be detected
- LOD depends on measurement time (sqrt(T)), matrix (including moisture), grain size.
- Generally light elements have significantly higher LOD's than heavy elements, such as Cu.
- Precise measurement of light elements with HHXRF requires relatively long measurement time

Calibration tuning

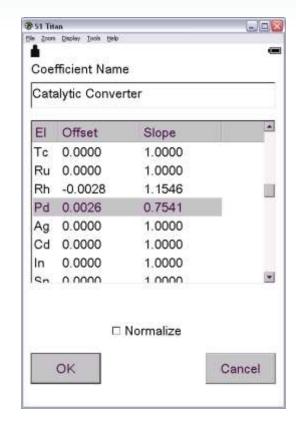
S1 TITAN 600,800 Geochem Application

Light Element Analysis

- S1 TITAN 600 analysis range is Mg-U
- For HH-XRF, Mg, Al, Si, P, S, Cl, K, Ca are considered as light elements
- Light element analysis provides important information on sample matrix and enables HHXRF to be used for many new applications.
- Light element also makes t more accurate

Challenges

- Grain size
- Heterogeneity
- Moisture content
- Measurement depth


GeoChem Trace Elemental Range

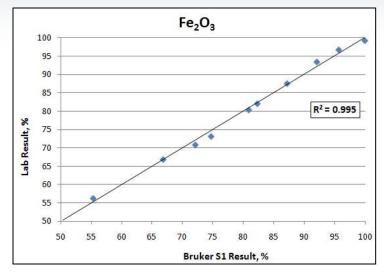
Η											-						Не
Li	Be				Ligh	t Ele	mer	nts				В	С	Ν	0	F	Ne
Na	Mg	Mg								Al	Si	Р	S	Cl	Ar		
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Тс	Tu	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac															
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

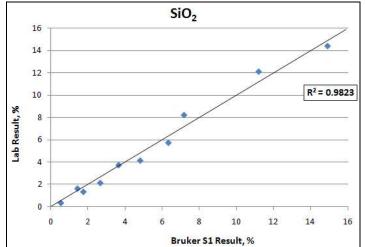
Type Standardization Example for S1 TITAN

- Type standardization feature enables user to adjust factory calibrations by setting elementspecific slope and offset coefficients with the S1 software.
- This feature is specifically designed for mining applications to enable easy on-site calibration optimization based on known standards.
- In some cases, type standardization can replace customer-specific calibration.
- Multiple coefficient sets can be saved for each calibration, which in practice makes it possible to create "sub-calibrations" for different sample types.

(1) Find a Sample set with reference concentrations....

Reference Sample	Si	Са	Fe	SiO2	CaO	Fe2O3
FO15-NBS690-powder	1.73	0.14	66.85	3.70	0.20	95.60
FO15-Fe2O3-powder	0.00	0.00	69.93	0.00	0.00	100.00
FO15-MW-1-powder	2.15	0.04	66.08	4.60	0.05	94.49
FO15-606-1-powder	1.04	1.04	59.66	2.23	1.46	85.31
FO15-ICRMP3-powder	1.75	3.19	58.60	3.75	4.47	83.80
FO15-ICRMP4-powder	2.94	2.15	60.20	6.29	3.01	86.09
FO15-SiO2-powder	46.72	0.00	0.00	99.99	0.00	0.00
FO15-681-powder	8.32	2.00	33.21	17.80	2.80	47.49
FO15-680-powder	4.20	0.45	59.98	8.99	0.63	85.77
				* 2.14	*1.4	*1.43


(2) calculate type standardization



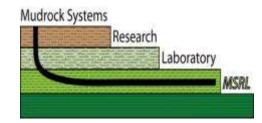
X	🚽 🔊 - (° - -		t Calculation 1-3	workshop	o.xls [Compatibil	ity Mode] - Mi		×			
F	ile Home Ins	ert Page Layout	Formulas Data	a Reviev	v View Add-In	s Document Loc	; a 🕜 🗆 🗗	23			
2	🗎 🐰 Calibri	i * 11	· = = =		General 🔹	A ansert	· Σ· Δ				
4	🗋 📭 - В 🖌		₹ ≣ ≣ ≣	• a • •	\$ - % ,	Delete	e - 🗔 - 🏔 -				
Pas	ste 🦪 💠 🗸	3 - A -			4.0 .00 .00 →.0	Styles 📕 Forma	_				
Clip	board G	Font	G Alignment		Number 5	Cells	Editing				
G10 • f _x • ·											
	А	В	С	D	E	F	G				
4	-Correlation in	dicates agreer	nent between R	eferenc	e values and S1	Measurement	results . Correla	at Î			
5								-			
6	Element 1 Fe2O3 Element 2 SiO2										
7	SLOPE	1.0)253	1	SLOPE	1.	0744				
8	OFFSET	0.0	0000]	OFFSET	-0.	.7306				
9	CORRELATION	99	.9%		CORRELATION	10	0.0%				
10]]_			
	Reference	S1 Meas.	Adjusted S1	1	Reference	S1 Meas.	Adjusted S1	Ĩ.			
11	values	Results	Result		values	Results	Result				
12	95.6	94.04	96.42	nbs690	3.7	5.6	5.29				
13	85.8	85.7	87.87	680	8.99	7.7	7.54				
14	100	97.1	99.56	fe2o3	0	0	-0.73				
15	0	0.08	0.08	SiO2	100	93.65	99.89				
16	47.5	49.15	50.39	681	17.8	17.9	18.50				
17			0.00				-0.73				
18			0.00	4			-0.73	4			
19			0.00	4			-0.73	4			
20			0.00				-0.73	4			
21			0.00	4			-0.73	4			
22			0.00	4			-0.73	4			
23			0.00				-0.73	4			
24			0.00	-			-0.73	-			
25			0.00	4			-0.73	4			
26			0.00				-0.73	-			
17	Coefficie	ent Calculation	Element-Oxi	de conve	ersion 🛙 🖣 📖		<u>ده</u> ۵				
Rea						<u> </u>) .;			
		-									

(3) get improved results

	Fe ₂ O ₃	Al ₂ O ₃	SiO2	S	CaO	MnO
Meas 1	87.9	4.31	5.54	0.022	0.093	0.529
Meas 2	87.8	4.54	5.95	0.028	0.093	0.498
Meas 3	86.5	4.69	6.04	0.020	0.083	0.503
Meas 4	88	4.98	6.02	0.025	0.086	0.494
Meas 5	87.3	4.84	6.07	0.019	0.085	0.496
Meas 6	88	4.58	5.47	0.031	0.084	0.495
Meas 7	88.4	4.61	5.91	0.028	0.086	0.497
Meas 8	88.2	4.21	5.81	0.021	0.094	0.503
Meas 9	87.3	4.89	6.02	0.026	0.079	0.502
Meas 10	86.4	4.49	5.9	0.020	0.080	0.502
STD DEV	0.689	0.246	0.209	0.004	0.005	0.010
Average	87.58	4.61	5.87	0.024	0.086	0.502
Lab Results	87.15	4.47	6.35	0.029	0.098	0.439

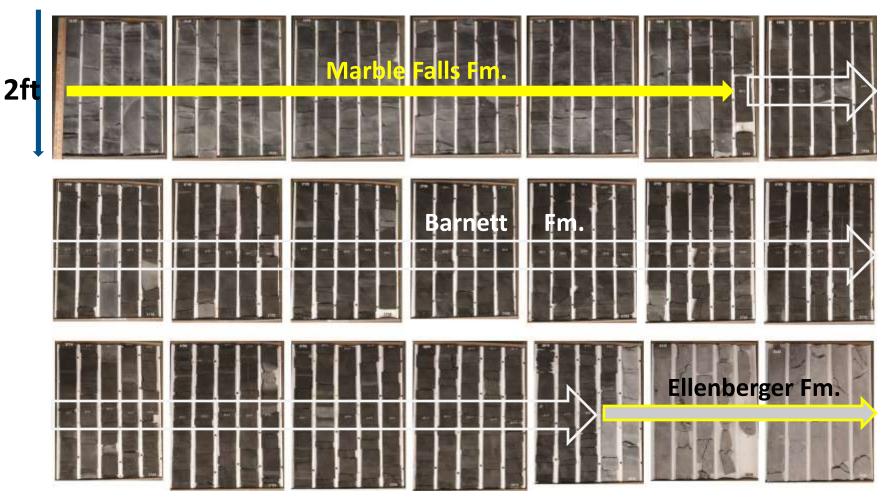
Calibration Using your OWN calibrations...

Strategy for Developing and Calibrating Shale and Mudstone Chemostratigraphies using Handheld X-ray Fluorescence Units


Harry Rowe University of Texas at Arlington

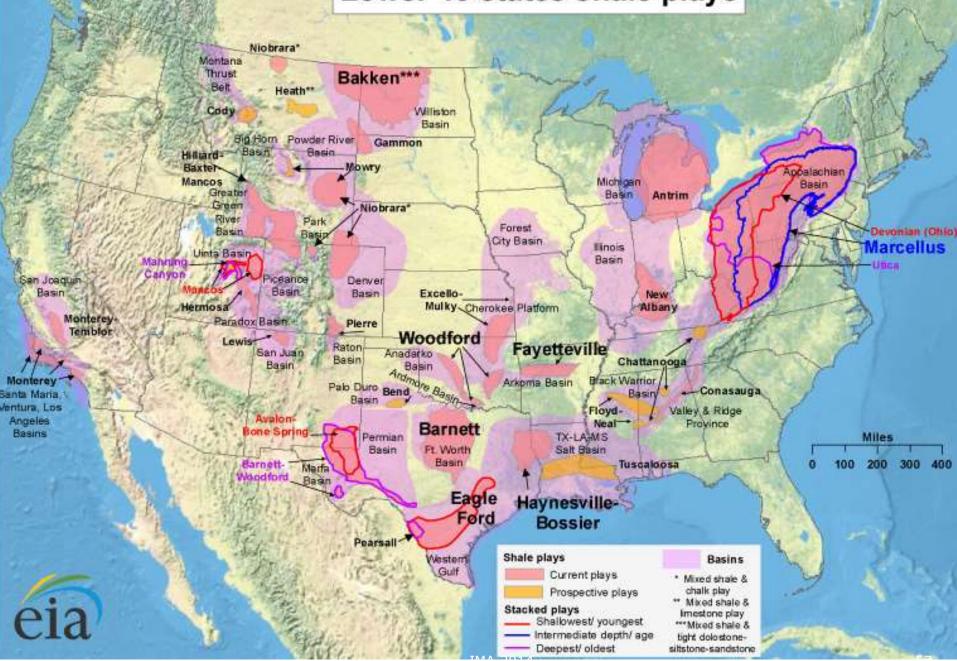
Handheld XRF Applications to Mudrock Chemostratigraphy: Perspective, Methods, Pitfalls, and Examples

> Harry Rowe Bureau of Economic Geology University of Texas at Austin

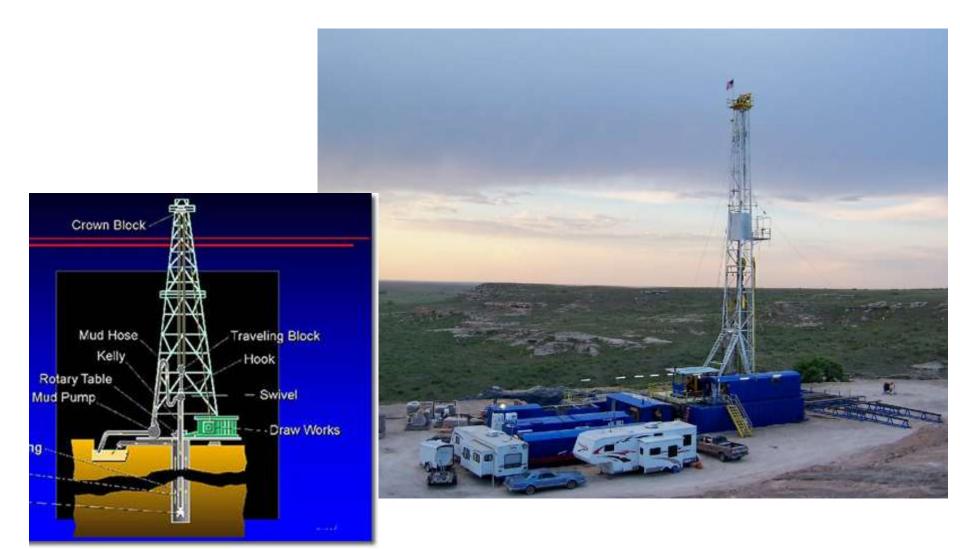

Acknowledgements: Henry Francis, Barry Maynard, Sue Rimmer; Bruce Kaiser, Alexander Seyfarth; Steve Ruppel, Bob Loucks, and the Mudrock Systems Research Laboratory, the BEG Administration, Dean Sharon Mosher of the UT Jackson School,; Nestor D Phillips II, all of my students who have helped me look better than I really am...©

Initial Statements

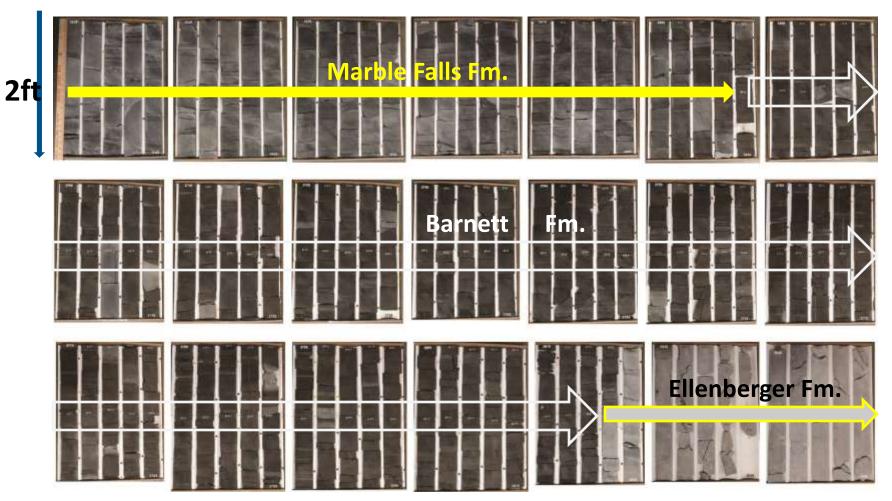
- A mudrock stratigraphy is more useful with a geochemical/mineralogical context.
 - Why? Because of the fine-grained and *seemingly* invariant nature of many mudrock successions.
 - Because different people call the same rock something different...lack of consensus and quantification.
- One's ability to <u>quantify</u> chemostratigraphic changes takes about as long as undertaking qualitative work—let's try to avoid "soft geochemistry".
 - How? Through careful calibration of XRF spectra (using real mudrocks as references, not x-ray theory): Why be qualitative, when you can be quantitative?
- Just because you get an elemental "answer" does not signify that the element is *measurable*, and it certainly does not indicate that the answer is *correct*.
 - Why not? Because those who design the instrument and software are focused on just that---the instrument and the software—not the elemental abundance and distribution in <u>your</u> geological materials.


Chemostratigraphy

a rapid method for generating chemical data in drill cores.

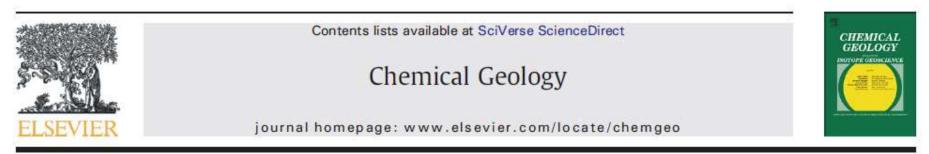


NOTE: Any one box of Barnett Shale looks almost exactly like the other boxes....



XRF on Drill rig....

Mudrock cores....


NOTE: Any one box of Barnett Shale looks almost exactly like the other boxes....

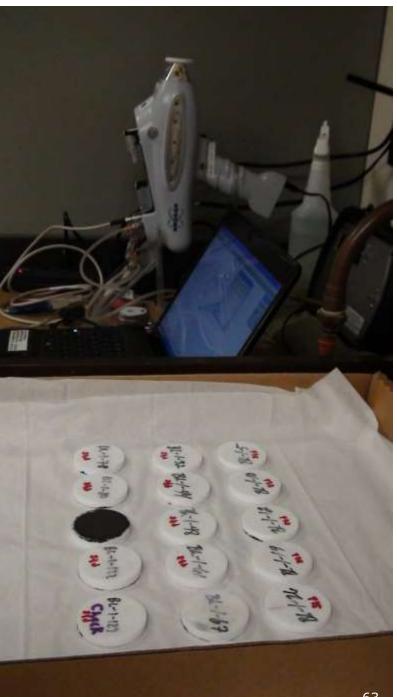
MUDROCK DRILL CUTTINGS

Most XRF work in O&G is done out in the field, on a drill rig, using drill cuttings; core is a luxury.

The Application documented for all!

Chemical Geology 324-325 (2012) 122-131

Research paper


The quantification and application of handheld energy-dispersive x-ray fluorescence (ED-XRF) in mudrock chemostratigraphy and geochemistry

Harry Rowe, Niki Hughes *, Krystin Robinson

Earth and Environmental Sciences, University of Texas at Arlington, 500 Yates Street, Arlington, TX, USA

Reference Materials

- Originally selected starting reference materials by scanning cores and picking peaks that reflected high/low/medium elemental concentrations
- Had references analyzed by WD-XRF of fused pellet and ICP-MS analysis of borate fusion at SGS (Canada)
- Reference powders pressed into pellets (40ton press)
- Pressed with boric acid backing

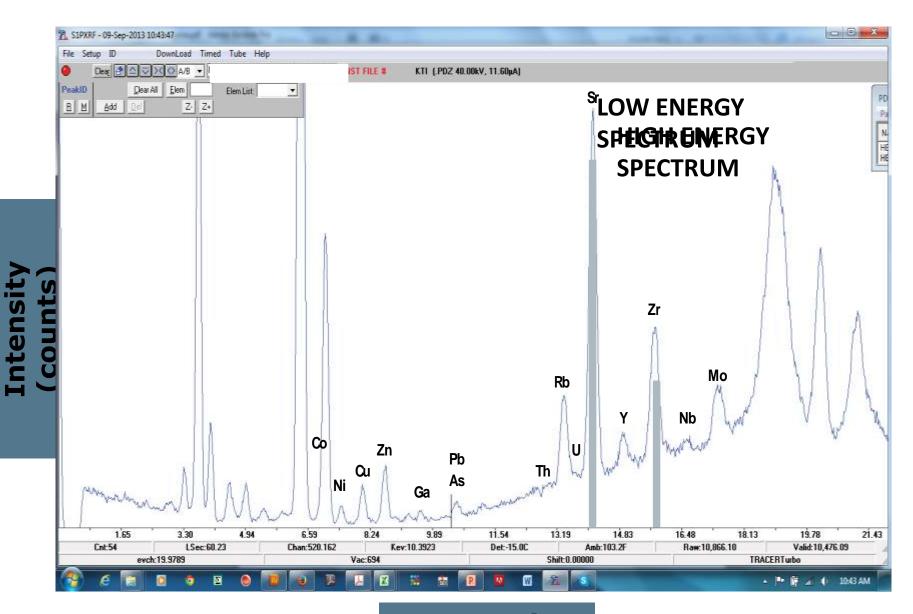
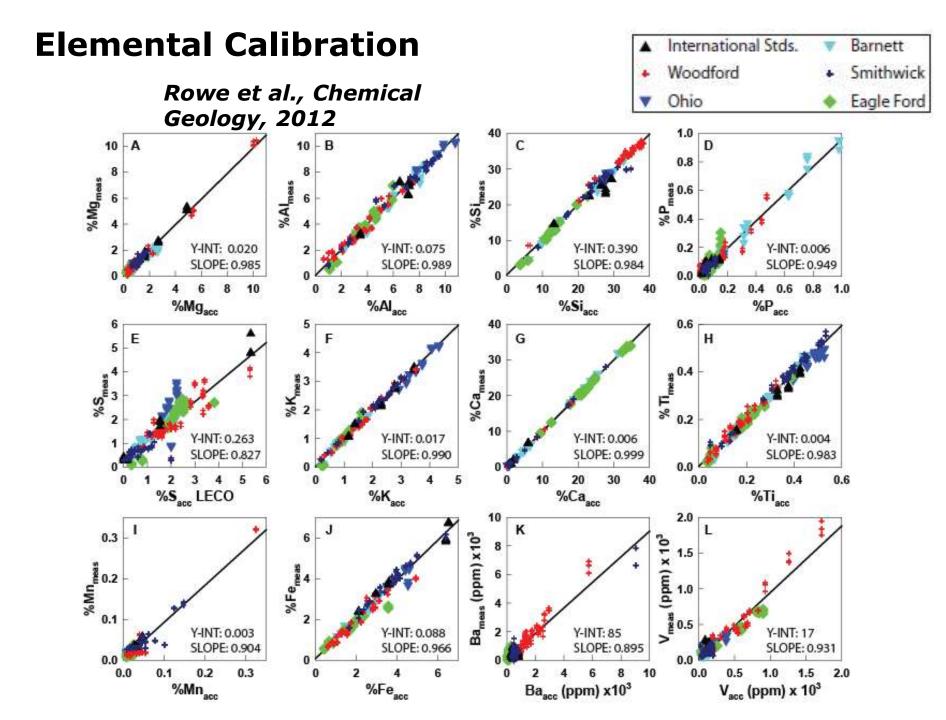

Sample Selection

Table 1

Tally of minimum and maximum elemental concentrations for the suite of calibration standards and in-house reference materials.

	Standards ^a 5		ndards ^a Woodford Fm. ^b 27		Ohio Shale	c	Barnett Fn	n. ^d	Smithwick	Fm."	Eagle Ford Fm. ¹	
n ^g Element					7		16		20		15	
	Range of values for each formation											
	Min ^h	Max ^h	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Mg (%)	0.93	4.89	0.27	10.25	0.66	1.08	0.52	2.64	0.63	1,88	0.24	0.66
Al (%)	3.45	9.96	0.64	7.62	6.87	10.77	1.20	8.47	1.00	13.07	1.07	5.98
Si (%)	13.2	29.3	5.89	38.2	26.8	28.8	6.22	32.7	8.79	34.8	3.75	22.6
P (%)	0.02	0.14	0.01	0.48	0.02	0.17	0.07	0.98	0.03	0.12	0.02	0.15
S (%)	0.01	5.35	0.46	5.32	0.72	2.25	0.25	224	0.02	2.00	0,33	3.81
K (%)	1.15	3.45	0.17	3.51	2.92	4.32	0.27	1.83	0.22	3.12	0.14	1.61
Ca (%)	0.43	5.99	0.07	18.1	0.19	0.71	2.77	31.2	0.32	27.7	9.36	34.7
Ti (%)	0.16	0.43	0.04	0.33	0.40	0.53	0.07	0.46	0.05	0.53	0.04	0.39
Mn (%)	0.015	0.046	0.008	0.325	0.008	0.031	0.008	0.031	0.008	0.147	0.008	0.02
Fe (%)	2.12	6.53	0.61	4.92	3.09	4.60	0.64	3.54	1.66	6.38	0.43	3.57
Ba (ppm)	290	820	842	5750	434.3	562	63.5	625	357	9050	30.3	295
V (ppm)	87	160	51	1720	141	385.5	22	165	24	196	41	899
Cr (ppm)	30	123	20	260	62	96	40	295	40	120	10	100
Ni (ppm)	27	122	17	302	33.5	136.8	26	168	22	144	11	155
Cu (ppm)	28.7	66	8	485	22.3	60.5	12	83.5	8	54	5	66
Zn (ppm)	55	103	24	1220	77.1	505.3	57	387	45	301	20	503
Th (ppm)	4.8	12.8	1.3	10.7	9.1	14	2	12.9	2.1	14.6	1.6	9.9
Rb (ppm)	59	205	13.9	200	140.8	224.1	16.5	121	15.3	167	6.4	91.7
U (ppm)	1.5	48.8	3.36	66	7.2	37.3	1.22	11.4	1.81	6.62	1.67	14
Sr (ppm)	54	420	36.4	483	105.3	145	248	869	107	518	329	791
Y (ppm)	13	40,6	5.8	52.7	26.2	37.2	10,9	62	20	35.3	7.6	22.3
Zr (ppm)	53	165	15.5	122	133.9	217.7	25	146	17.2	338	32.6	215
Nb (ppm)	5.2	14.3	2	13	14	16	2	15	2	15	3	22
Mo (ppm)	1.4	134	9	166	1.3	153.7	2	13	2	3	3	22 95
Total min/maxi	0	1	10	9	1	2	2	4	0	5	10	2

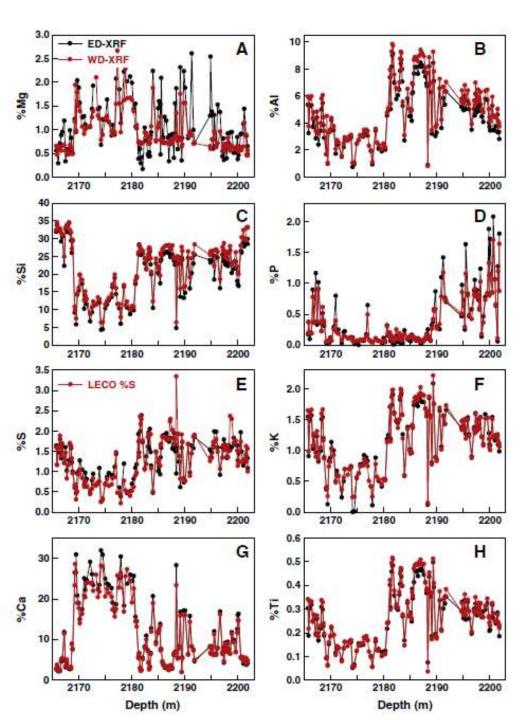
Data Acquisition: Qualitative Real-Time Spectra


Energy in

Some more exciting tables...

Table 3

Accepted versus measured elemental concentrations, inter-pellet standard deviations, intra-pellet standard deviation, and limits of determination of a method for one internationally accepted standard (SARM-41), and one in-house reference material (RTC-W-220) prepared using pulverized sample from the Mississippian-age Woodford Formation.


Element	SARM-41				RTC-W-220 (Woodford Fm.)						
	Accepted value ^a	Measured value ^b	07 pellets ^c	$\sigma_{1\text{pellet}}^d$	LDM ^e	Accepted value ^a	Measured value ^b	$\sigma_{7\text{pellets}}^{c}$	$\sigma_{1\text{pellet}}^d$	LDM ^e	
Mg (%)	4.9	5.0	0.17	0.20	0.33	0.67	0.80	0.09	0.17	0.17	
Al (%)	7.14	5.89	0.14	0.10	0.28	4.96	5,39	0.14	0.05	0.28	
Si (%)	26.5	24.0	0.2	0.2	0.5	32.6	33.7	0.2	0.2	0.5	
P (%)	0.02	0.02	0.02	0.01	0.03	0.07	0.05	0.03	0.03	0.07	
S (%)	0.15	0.19	0.02	0.01	0.04	3.34	2.18	0.10	0.04	0.20	
K (%)	1.15	1.02	0.02	0.02	0.04	2.07	2.31	0.09	0.04	0.18	
Ca (%)	1.07	0.99	0.03	0.01	0.06	0.13	0.23	0.03	0.00	0.06	
Ti (%)	0.33	0.29	0.01	0.02	0.02	0.23	0.27	0.02	0.01	0.04	
Mn (%)	0.046	0.056	0.003	0.002	0.006	0.015	0.012	0.001	0.001	0.002	
Fe (%)	2.96	3.20	0.03	0.01	0.06	2.93	2.55	0.06	0.02	0.12	
Ba (ppm)	820	802	214	147	428	2090	1884	376	83	753	
V (ppm)	139	167	41	44	82	928	1114	68	66	137	
Cr (ppm)	123	106	16	9	32	110	98	13	9	26	
Ni (ppm)	122	79	17	8	34	130	153	26	20	52	
Cu (ppm)	53	65	24	14	48	83	147	20	16	40	
Zn (ppm)	76	67	7	11	14	823	844	96	30	191	
Th (ppm)	12	7	1	1	2	8.4	9	1	2	2	
Rb (ppm)	59	45	3	3	6	122	123	12	4	25	
U (ppm)	2	3	2 2	3	4	18.1	17	6	4	11	
Sr (ppm)	54	47	2	1	4	75.5	87	5	4	10	
Y (ppm)	17	17	1	1	3	35.4	34	3	2	5	
Zr (ppm)	146	130	5	4	11	80.3	95	7	2	13	
		U, La1	Rh		Rb, U, Sr	20 ¹⁰		Limit	of		
			Ca, Mn, Rb,	Sr Ph	U, Sr	5		Deteri	minat	ion of	
				51, 141				a Metl	bod		
		CONTRACTOR AND A	Th, Rh		Rb, Y	4		a meti	iuu		
		Zr, Ka1	Y, Zr, Rh		Sr, Zr	4		(Rous	seau.		
		Nb, Ka1	Rh		Y, Zr, Nb, N	Mo 3		-	-		
		CONTRACTOR CONTRACTOR OF A	Ti		Zr, Nb, Mo	Contraction of the second s		2001)			
		WIU, Nat	11		21, 140, 140	/0					

Comparison HH vs. WD-XRF

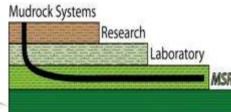
Why did this approach work so well?

- Mudrocks are already very homogeneous at a very small scale.
- The average grain size in a mudrock is on the order of 5 microns.
- Pulverizing the sample only serves to help the already homogeneous sample.

Why didn't it work better?

- Some pressed pellets were not thick enough...listen next time.
- Some references were not pulverized enough...listen next time.
- We created error by scanning each reference pellet 3 times and moving it around on the nose of the instrument between measurements...not necessary, but a good waste of time.

Onto the next version with improved performance!


Harry Rowe

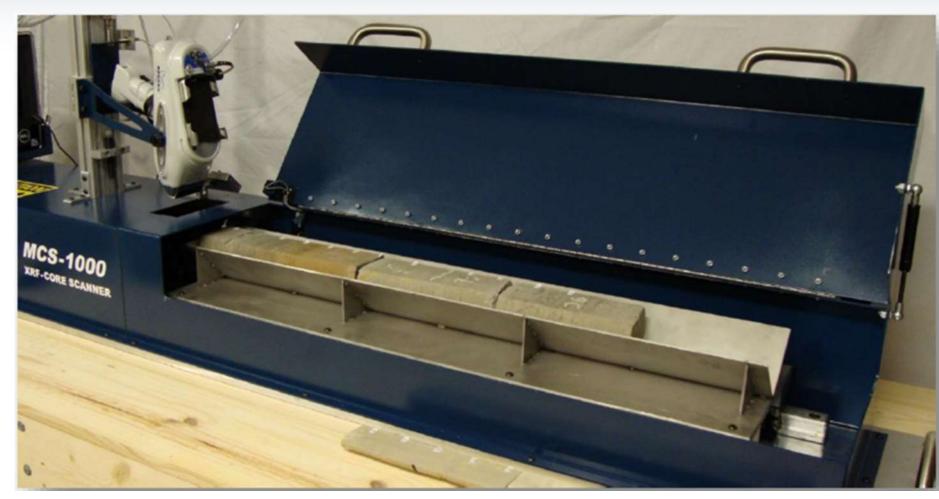
Bureau of Economic Geology

University of Texas at Austin

"Manual" HH-ED-XRF Workflow

- Wash
- Label
- Scan
- Drill
- Rinse
- Repeat

Core Scanner attachment with Camera and full quantification support for TRACER



Max 4 inch core in 3 feet (1 m) standard segments TRACER IV SD system with He purge for Na-U elemental range

Core Scanner accessory for TRACER

1 m core

TRACER Series Instrument for the most flexible use ...

S1 TRACER III Series and IV Series

HandHeld Portable Benchtop Desktop

The ONLY Crossover

SPECTROMETER With all SW for CUSTOM CALIBRATION

CONCLUSION

- Good data can be achieved with the right pXRF/ HH XRF approach
- Generic calibrations (vendor provided) can be used for screening and semi-quantitative analysis provided that sample and calibration approach fit
- "Tuned" or type standardized calibration (based on the vendor application) using some matrix matched reference samples are useful and required if the samples are not "apples to apples" and higher accuracy is required
- For publication and data comparison between units it is recommended to modify the base calibration using matrix matched samples or create a dedicated calibration
- BRUKER Instruments can "switch" calibrations enabling to automatically select the "right" one

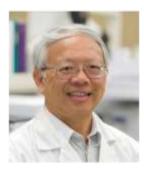
Work SMARTER not HARDER

How to learn more and get hands on experience

- Free BRUKER HH XRF Workshops :
 - <u>http://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/handheld-xrf/workshop/workshop-overview.html</u>
- SME/GSA Meeting Workshops
- U Texas (Dallas) MUDROCK training
- UWO Ontario, Canada Seminars
- WSU Washington USA Seminars

X – R AY F LUCRESCENCE SPECTROMETRY short course with special topical workshops June 2 – June 13, 2014

Week I - Fundamentals, Instrumentation and QA/QC of Methods Week II - Quantitative Analysis, Methods Development and Data Reduction Methods Special Topical Workshops –

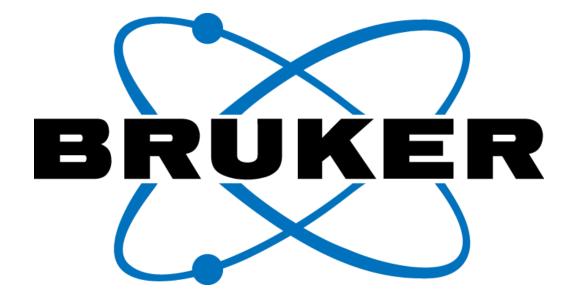

June 6, Sample Preparation for XRF Analysis

For more information http://www.uwo.ca/earth/xrfcourse

The University of Western Ontario

Department of Earth Sciences

Dr. Charles Wu


University of Western Ontario Senior Research Scientist, BIOTRON Research Centre Organizer and Lecturer, UWO XRF Short Course ctwu@uwo.ca

Alexander Seyfarth

Bruker Elemental Sr. Product Manager HHXRF Lecturer, UWO XRF Short Course alexander.seyfarth@bruker-elemental.net

Department of Earth Sciences University of Western Ontario Biology & Geological Sciences Bldg., University of Western Ontario London, Ontario, CANADA N6A 5B7 Phone: 519-661-3187 Fax: 519-850-2573

www.bruker.com

© Copyright Bruker Corporation. All rights reserved.

Literature citations on pXRF

- Glanzman, Kloos in "Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration" edited by B. Milkereit, 2007, p. 291-301
- Taylor, P.D, Ramsey, M.H. and Potts, P.J., 2004, Balancing Measurement Uncertainty against Financial Benefits: Comparison of In Situ and Ex Situ Analysis of Contaminated Land: Environ. Sci. & Tech., 38, 6824-6831.
- Potts PJ, West M (2008) Portable X-ray Fluorescence Spectrometry: Capabilities for In Situ Analysis. RSC publishing, London, UK, 291 pp

2014 S1 TITAN 200,300, 600,800

S1 TITAN MODELS

					Calibrations									
S1TITAN Configurations	Excitation Dete	Detector	Elemental Range	Spot Size	Alloy	Alloy LE	Precious Metals	Low Lead in Copper	Restricted Materials	Regulated Metals	Regulated Plastics	Limestone	GeoChem	Soil
Model 800	6-50kV 4 filters	FAST SDD™	Mg - U	8, 5 or 3*mm		•	•	•	•			•	•	•
Model 600	15-50kV 4 filters	FAST SDD™	Mg - U	5mm		•	•	•	•			•	•	•
Model 300	15-50kV 4 filters	SiPIN	CI - U	5mm	•		•			•	•		•	•
Model 200	45kV Fixed filter	SiPIN	Ti - U	5mm	•		•							

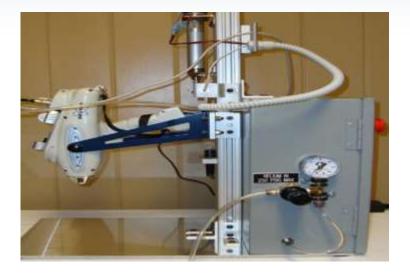
S1 TRACER III Series and IV Series 2008-....

Benchtop Desktop Crossover Point&Shoot

SPECTROMETER With all SW for CUSTOM CALIBRATION

RSC-20 LAB FEATURES

- LAB VERSION includes shipping crate and 1 TRAY
- FIELD VERSION includes shipping crate + PELCICAN CASE and 1 TRAY


Removable 20-nosition Table Assembly for use with the

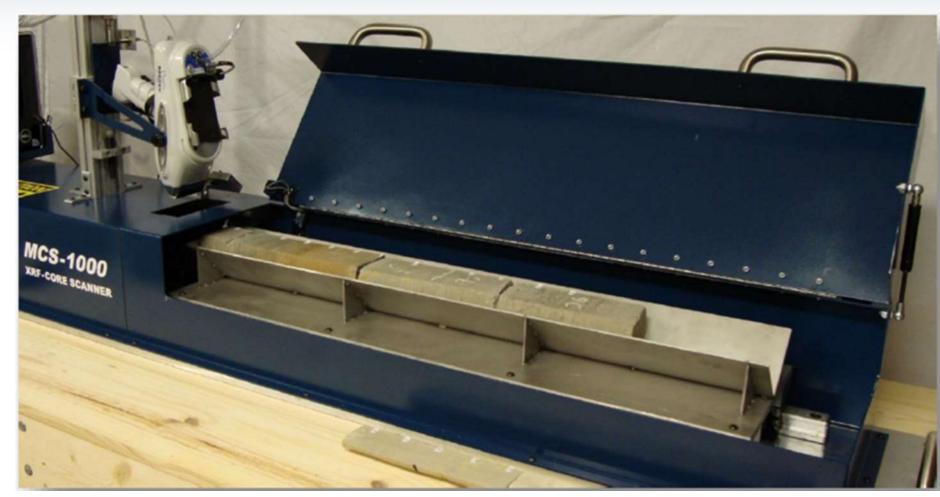
• AVAILABLE TRAYS are

XSC-001	Rotary Table for Sample Cups	Removable 20-position Table Assembly for use with the Rotary XRF Sample Changer. Accommodates standard Chemplex® 1940 XRF Sample Cups. Manufactured using stable plate materials and precision machining						
		techniques required to maintain a flat table.						
XSC-008 Rd		Removable 20-position Table Assembly for use with the						
		Rotary XRF Sample Changer. Accommodates standard						
	Rotary Table for Sample Cups	Accommodates Premier SC-4231 XRF Sample Cups (OD						
	roary rase for sample cups	32mm). Manufactured using stable plate materials and						
		precision machining techniques required to maintain a						
		flat table,						
XSC-002		Removable 20-position Table Assembly for use with the						
		Rotary XRF Sample Changer. Accommodates loose						
	Rotary Table for Loose Samples	samples. Manufactured using stable plate materials and						
		precision machining techniques required to maintain a						
		flat table.						

TRACER BT SAMPLE CHANGER WITH HE MMS 300H

- Rugged Industrial Design
- Up to 12Inch sample height
- Helium Shield Gas Management

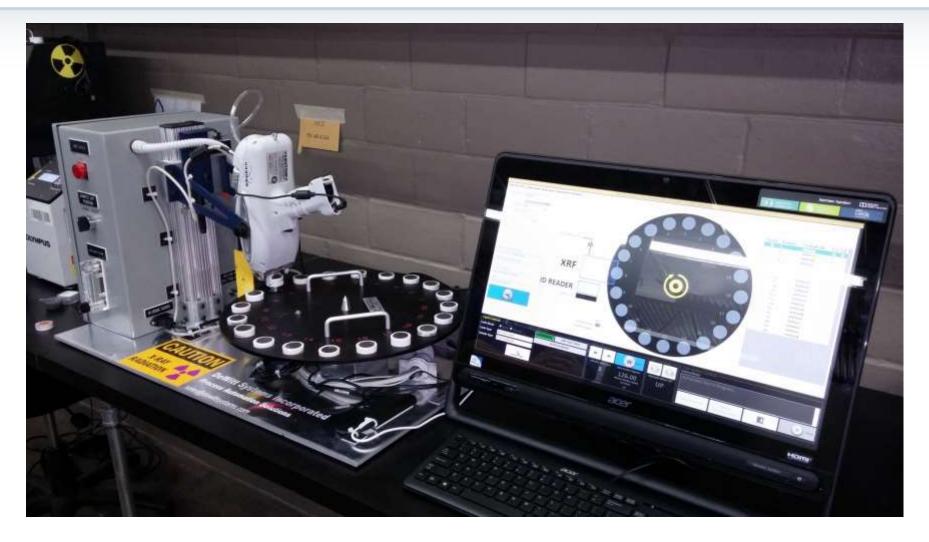
Core Scanner attachment with Camera and full quantification support for TRACER



Max 4 inch core in 3 feet (1 m) standard segments TRACER IV SD system with He purge for Na-U elemental range

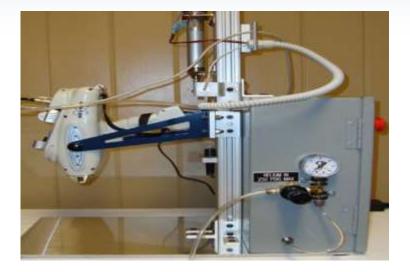
NON PRICE LIST ITEM: Please ask your RSM for pricing and availability

Core Scanner accessory for TRACER

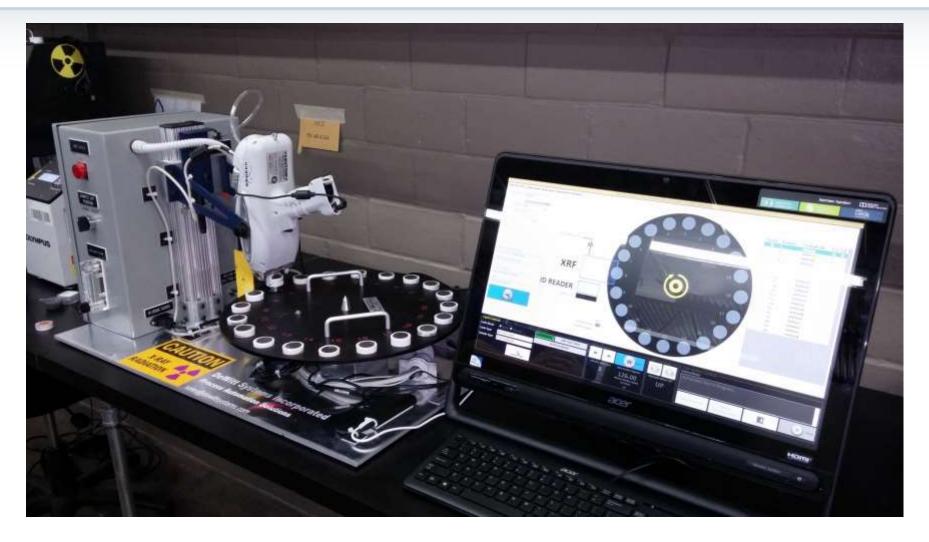


NON PRICE LIST ITEM: Please ask your RSM for pricing and availability

IMA 2014

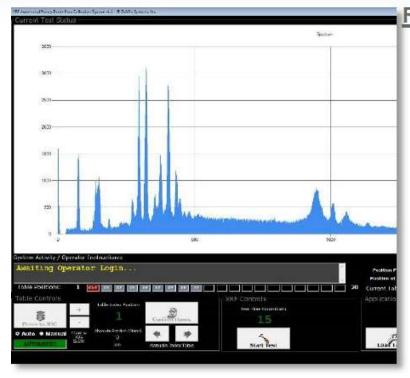

SNEAK PEAK NEW "SAMPLE CHANGER" for tube on top setup to minimize cross contamination

TRACER BT SAMPLE CHANGER WITH HE MMS 300H

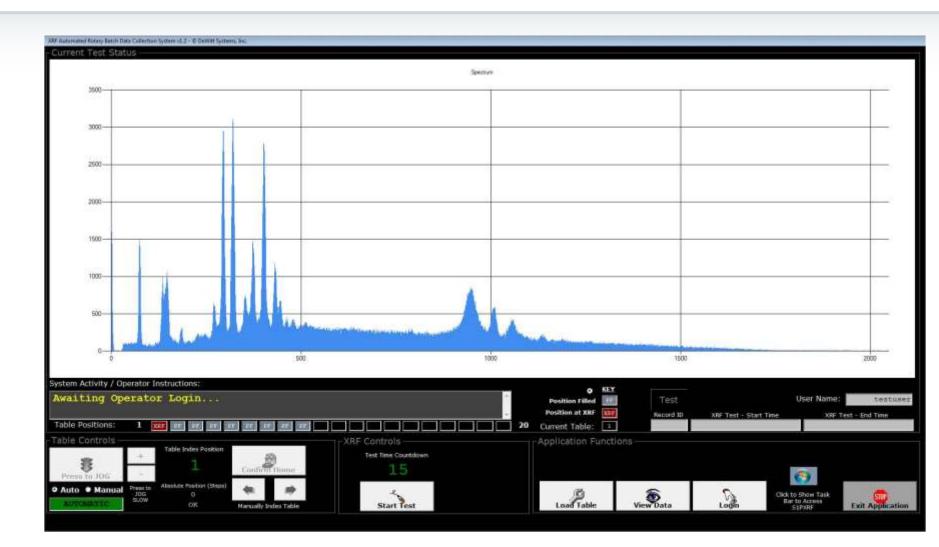


- Rugged Industrial Design
- Up to 12Inch sample height
- Helium Shield Gas Management

SNEAK PEAK NEW "SAMPLE CHANGER" for tube on top setup to minimize cross contamination


BENCHTOP STAND WITH SAMPLE CHANGER (LAB)

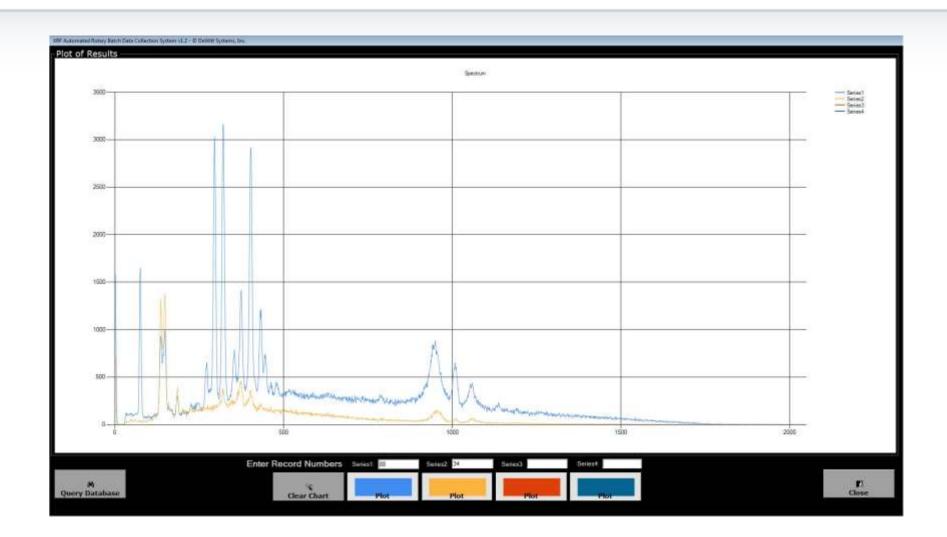
• DE WITT RSC -2- FOR BRUKER TRACER models


RSC-20 Features

2

>

- Designed for High Reliability with Heavy Duty Construction
- Supports standard sample cups and loose samples
- Automation Control System with Universal Power Supply
 - Stores operator-supplied SAMPLE ID data with association to RAW spectra collected by the XRF Instrument into a standard SQL Database
 - Standard software includes tools to perform comparative data plotting and raw data record search and display.
 - Available Travel Kit Version FIELD VERSION
 - Custom Tables available to meet specific customer applications
 - 1 year system warranty with option to extend
- LAB and FIELD VERSION
- INCLUDES CONTROL SW AND PC



lecord ID:		Include in Que	Find		Record Number	Date Sam	pled	UserField1	UserField2			
ate Range: 7/ 3/2011	• 2	/26/2012 •	100000		81		9:56:57 PM	sfgsdfsdf	sdfsdf			
IserField1:			111 - 11 - 11 - 11 - 11 - 11 - 11 - 11		93		7:50:53 PM	sfgsdfsdf	sdfsdf Material Type			
serField2:			Use Selected Reco	ord	94 62	and the second sec	7:51:24 PM 9:57:27 PM	Lot 123 Lot 123	Material Type Material Type			
ults - Header			and the particular second	Re	sults - Details	01112022	21271417111	505 140	Protection (The	<u>^</u>		
Record ID:	88				1 256	257 512	513 768	769: 1024	1025 1280	1281 1536	1507 179	2 1793 2046
Date/Time Sampled:	8/8/2011 7:2	7:39 PM			Channel:Data + Ch0 : 1589	Channel-Deta + Ch256 : 136	Channel Oata + Ch512 : 347	ChetrisicData + Ch768 i 237	Channel:Data + Ch1024 : 207	Channel:Deta + Ch1280 - 118	Channel:Data Ch1536 r 48	Channel:Date - Ch1792 : 5
UserField1:	Lot 123				Ch1 : 1424 Ch2 : 1022 Ch2 : 508	Ch257:176 Ch256:150 Ch259:160	Ch513:354 Ch514:345 Ch513:375	Ch769 : 231 Ch770 : 263 O+771 : 248	Ch1025:209 Ch1026:229 Ch1027:188	Ch1261 - 131 Ch1263 - 118 Ch1263 - 92	Ch1537 : 45 Ch1538 : 52 Ch1539 : 54	Ch1793:5 Ch1794:5 Ch1795:4
UserField2:	Material Type	e x			Ch4:235 1 Ch5:71	CH200 ± 182 1 CH261 ± 184	Ch518:358 1 Ch517:342	Ch772 : 228 1 Ch773 : 238	Ch1028 175 F Ch1029 225	CH1254 : 87 F CH1255 : 111	Ch1540 : 50 1 Ch1541 : 73	Ch1798:4 1 Ch1797:4
UserField3:	This is a 40	00char cooment field		1	CH6 - 19 CH7 - 9 CH8 - 5 CH8 - 5	Ch262 1 197 Ch263 : 218 Ch264 1 245 Ch265 : 345 Ch265 : 467	CN518 : 356 CN519 : 345 CN520 : 325 CN521 : 313 CN522 : 325	Ch1774 : 256 Ch1775 : 248 Ch1775 : 248 Ch1776 : 250 Ch1777 : 260 Ch1776 : 262	Ch1030 : 231 Ch1031 : 207 Ch1033 : 207 Ch1033 : 215 Ch1034 : 258	Ch1286 : 102 Ch1287 : 104 Ch1288 : 108 Ch1289 : 101 Ch1289 : 101 Ch1290 : 107	Ch1542 = 35 Ch1543 = 50 Ch1544 = 48 Ch1545 = 52 Ch1545 = 40	Ch1798:4 Ch1795:2 Ch1800:2 Ch1801:3 Ch1801:3 Ch1802:1
Table Number:	1	Position Number:	5		CM12:1 CM12:1 CM13:0	Ch267 1 438 Ch268 1 578 Ch269 1 804	CH523 : 350 Ch524 : 351 Ch525 : 359	CN779 (243 CN780) 271 CN781 (255	Ch1035 - 238 Ch1036 - 223 Ch1037 - 253	CH1291 - 116 CH1292 - 127 CH1293 - 102	Ch1547 : #4 Ch1548 : 47 Ch1549 : 60	Ch1803 : 4 Ch1804 : 4 Ch1805 : 4
Duration of Test:	15.749				Ch14:0 Ch19:1	Ch270:1559 Ch271:1653	Ch526 1382 Ch527 1334	Ch(762 : 258 Ch(762 : 352	Ch5838 - 247 Ch5838 - 248	Ch1294 : 95 Ch1299 : 118	Ch1550 - 40 Ch1551 - 47	CR1806 + 1 CR1807 + 0
Ambient Temperature:	89.5				Ch16 + 0 Ch17 + 0 Ch18 + 0	CR272 + 628 CR273 / 565 CR274 + 451	CH529 - 224 Ch529 - 339 Ch530 - 319	Chi784 : 315 Chi785 : 291 Chi785 : 292	Ch1940 > 259 Ch1941 + 247 Ch1942 + 261	Ch1296 : 136 Ch1297 : 89 Ch1298 : 112	Ch1552 - 38 Ch1553 - 49 Ch1554 - 39	Ch1858 : 2 Ch1809 : 4 Ch1819 : 4
Detector Temperature:	-15.0	-			Ch19 + 1 Ch20 + 0 Ch21 + 0	Ch275 383 Ch276 346 Ch277 342	CM531 (341 CM532 - 311 CM533 (340	Ch787 (287 Ch788 (278 Ch789 (278	Ch1043 : 286 Ch1044 : 280 Ch1045 : 308	Ch1299 88 Ch1300 92 Ch1301 107	Ch1558 : 58 Ch1558 : 49 Ch1557 : 57	Ch1811 1 3 Ch1812 1 2 Ch1813 1 0
alid Accumulated Counts:	480420	Raw Accumulated Counts:	526640		Ch22 19 Ch23 10	Ch279 / 367 Ch279 / 382	C1534 : 348 C1538 : 317	Ch790 + 310 Ch791 + 283	Ch1046 -: 287 Ch1047 -: 332	Cht302 : 93 Cht303 : 113	Ch1958 - 53 Ch1958 - 38	Ch1854 0 Ch1815 1
Valid Count Last Packet:	28658	Raw Count Last Packet:	31421		C104 10 C125 10 C126 14	Ch280 367 Ch281 349 Ch282 383	Ch536 (290 Ch537 (328 Ch538 (310	Ch792 : 278 Ch792 : 252 Ch794 : 261	Ch1948 - 327 Ch1949 - 350 Ch1960 - 341	Ch1304 : 93 Ch1305 : 93 Ch1306 : 81	Ch1560 42 Ch1561 44 Ch1562 51	Ch1916 - 1 Ch1917 - 7 Ch1918 - 3
Live Time:	14.449				ChQ7 (7 ChQ8 : 25 ChQ9 : 87	Ch283 / 170 Ch294 / 254 Ch285 / 382	C1539 329 C1540 31#	Ch795:282 Ch796:264	Ch1061 : 397 Ch1052 : 296 Ch1063 : 439	Ch1307 - 95 Ch1308 - 99	Ch2963 41 Ch2564 47	Ch1818 : 3 Ch1920 : 4
HV DAC:	178	HV ADC:	40		Ch30 1 92 Ch31 1 102	Ch286 445 Ch287 531	Ch541 - 395 Ch542 - 294 Ch543 - 325	Ch797 : 234 Ch798 : 223 Ch798 : 223	Ch1056 - 403 Ch1055 - 387	Cht309 : 112 Cht310 : 91 Cht311 : 99	Ch1565 40 Ch1566 37 Ch1567 39	Ch1821 2 Ch1822 2 Ch1823 4
Filament DAC:	194	Filament ADC:	15		Ch33 > 123 Ch33 > 123 Ch34 > 123 Ch34 > 93	Ch293 / 789 Ch299 / 1003 Ch290 / 1444	Ch544 : 352 Ch545 : 283 Ch546 : 324	Childol i 226 Childol i 250 Childol i 250	Chi2556 / 385 Chi2557 / 426 Chi258 / 437	Ch1312 : 90 Ch1313 : 104 Ch1314 : 113	Ch1568 : 30 Ch1569 : 43 Ch1570 : 43	Ch1824 : 3 Ch1825 : 2 Ch1825 : 6
Pulse Length:	201	Pulse Period:	254		CI05:112 CI05:105	Ch291 / 1906 Ch292 / 2270	Ch547 : 323 Ch548 : 225	Child 2 233 Child 233 Child 244 Child 244	Ch1058 : #10 Ch1050 : 410	Ch1315:108 Ch1316:123	Ch1571 47 Ch1572 50	Ch1027:0 Ch1036:1
Fliter:	4				Ch37 : 92 Ch38 : 106 Ch39 : 106	Ch293 (3715 Ch294 (3020 Ch295 (3000	Ch549 : 313 Ch550 : 298 Ch551 : 300	Ch805 : 261 Ch806 : 259 Ch807 : 238	Ch1061 : 395 Ch1062 : 338 Ch1063 : 337	Ch1317 : 103 Ch1318 : 94 Ch1319 : 84	Ch1573 : 54 Ch1578 : 41 Ch1575 : 43	Ch1829 : 4 Ch1830 : 4 Ch1831 : 3
eV per Channel:	20.0299				Ch40 1107 Ch41 198	Ch206 1 3724 Ch207 1 3308	Ch552 : 271 Ch553 : 293	Ch800 : 234 Ch800 : 235	Ch1064:332 Ch1065:273	Ch1320:06 Ch1321:192	Ch1576 : 39 Ch1577 : 32	Ch1032 : # Ch1035 : 3
Number of Channels:	2048				CN42 : 97 CN43 : 101 Ch44 : 107	Ch296 1 5832 Ch299 1 5315 Ch300 1 905	Ch554 : 321 Ch558 : 300 Ch556 : 300	Chibiú - 235 Chibií - 218 Chibií - 242	Ch1566 : 304 Ch1567 : 385 Ch1568 : 393	Ch1322 : 78 Ch1323 : 99 Ch1324 : 100	Ch1570 48 Ch1579 : 44 Ch1500 : 49	Ch1036 : 3 Ch1036 : 3 Ch1036 : 6
Vacuum:	577				CN45 : 122 CN46 : 102	Ch301:666 Ch302:501	Ch557 : 251 Ch558 : 206	Ch813:218 Ch814:268	Chi2060 : 284 Chi2070 : 244	Ch1325:100 Ch1326:100	Ch1581 : 42 Ch1582 : 39	Ch1037 : 0 Ch1030 : 6
		Enter Record Numbers	Westweek.	Series2	Sate		Serieot		1		58. C.	

RSC-20 FEATURES details

