

Lab Report XRF 122 S2 PUMA

 Limestone: Fast, Accurate, and Precise Analysis of CaO, MgO, and Fe₂O₃ and other Main Components

Introduction

Limestone is one of the most important industrial commodities because of its numerous applications ranging from sectors like building materials to steel production to pharmaceuticals to food. Like anywhere within the industrial minerals sector, constant process control is a must to ensure consistent product quality. Particularly sought-after is high-purity limestone with high contents of CaO and low concentrations of impurities like Fe_2O_3 . But also MgO is an important natural constituent of limestone and has to be monitored. This report demonstrates the analytical performance of the S2 PUMA for the measurement of limestone.

S2 PUMA: Production Control Made Easy and Quick

The S2 PUMA is the high-performing benchtop energy-dispersive X-ray fluorescence (EDXRF) spectrometer for a wide range of applications. It is ideally suited for process control of limestone samples due to its XY Autochanger for unattended analysis of large series of process samples. Its HighSense[™] beam path geometry with optional light elements (LE) configuration ensures high sample through-put in combination with best precision and accuracy even for light elements like Mg.

The instrument is perfectly equipped for industrial environments due to its ergonomic TouchControl[™] interface which allows for independent routine operation in Island Mode without any PC peripherals. The dedicated instrument protection system SampleCare[™], the powerful user account control of the spectrometer's software SPECTRA.ELEMENTS, and the sturdy design guarantee a high instrument uptime.

$\begin{tabular}{ c c c c } \hline Concentration Range [wt%] & Calibration Standard Deviation 3\sigma [wt%] \\ \hline MgO & 0.39 - 17.9 & 0.1620 \\ \hline MgO & 0.39 - 17.9 & 0.1620 \\ \hline Al_2O_3 & 0.02 - 2.4 & 0.0194 \\ \hline SiO_2 & 0.05 - 8.6 & 0.1330 \\ \hline P_2O_5 & 0.002 - 0.12 & 0.0022 \\ \hline SO_3 & 0.008 - 0.1 & 0.0012 \\ \hline K_2O & 0.001 - 0.4 & 0.0043 \\ \hline CaO & 32.0 - 55.4 & 0.2491 \\ \hline TiO_2 & 0.015 - 0.14 & 0.0003 \\ \hline MnO & 0.007 - 0.19 & 0.0032 \\ \hline \end{tabular}$						
Al ₂ O ₃ 0.02 - 2.4 0.0194 SiO ₂ 0.05 - 8.6 0.1330 P ₂ O ₅ 0.002 - 0.12 0.0022 SO ₃ 0.008 - 0.1 0.0012 K ₂ O 0.001 - 0.4 0.0043 CaO 32.0 - 55.4 0.2491 TiO ₂ 0.015 - 0.14 0.0003 MnO 0.007 - 0.19 0.0032	Compound					
$\begin{array}{ c c c c c c c } SiO_2 & 0.05 - 8.6 & 0.1330 \\ \hline P_2O_5 & 0.002 - 0.12 & 0.0022 \\ SO_3 & 0.008 - 0.1 & 0.0012 \\ \hline K_2O & 0.001 - 0.4 & 0.0043 \\ \hline CaO & 32.0 - 55.4 & 0.2491 \\ \hline TiO_2 & 0.015 - 0.14 & 0.0003 \\ \hline MnO & 0.007 - 0.19 & 0.0032 \\ \end{array}$	MgO	0.39 - 17.9	0.1620			
P2O5 0.002 - 0.12 0.0022 SO3 0.008 - 0.1 0.0012 K2O 0.001 - 0.4 0.0043 CaO 32.0 - 55.4 0.2491 TiO2 0.015 - 0.14 0.0003 MnO 0.007 - 0.19 0.0032	Al ₂ O ₃	0.02 - 2.4	0.0194			
SO3 0.008 - 0.1 0.0012 K2O 0.001 - 0.4 0.0043 CaO 32.0 - 55.4 0.2491 TiO2 0.015 - 0.14 0.0003 MnO 0.007 - 0.19 0.0032	SiO ₂	0.05 - 8.6	0.1330			
K ₂ O 0.001 - 0.4 0.0043 CaO 32.0 - 55.4 0.2491 TiO ₂ 0.015 - 0.14 0.0003 MnO 0.007 - 0.19 0.0032	P ₂ O ₅	0.002 - 0.12	0.0022			
CaO 32.0 - 55.4 0.2491 TiO2 0.015 - 0.14 0.0003 MnO 0.007 - 0.19 0.0032	SO3	0.008 - 0.1	0.0012			
TiO2 0.015 - 0.14 0.0003 MnO 0.007 - 0.19 0.0032	K ₂ O	0.001 - 0.4	0.0043			
MnO 0.007 - 0.19 0.0032	CaO	32.0 - 55.4	0.2491			
	TiO ₂	0.015 - 0.14	0.0003			
	MnO	0.007 - 0.19	0.0032			
Fe ₂ O ₃ 0.04 - 1.97 0.0163	Fe ₂ O ₃	0.04 - 1.97	0.0163			

Table 1: Details on calibration data

Calibration Data

For this report eight limestone reference samples have been used to set-up a calibration on the S2 PUMA XY Autochanger with Ag LE X-ray tube. The samples have been prepared as 40 mm pressed pellets with 9 g of milled specimen powder and 1 g of binding wax and have been pressed for 30 s applying 150 kN of pressure. The measurements took 100 s and have been performed under vacuum for optimal light element detection and lower operating costs not requiring helium flushing. Peak and background positions have been defined by fixed position, integration, and peak height or lower envelope, respectively. See Table 1 for the ranges and the standard deviations of the elements of the reference samples used for calibration. The exemplary calibration curve of Mg (see Figure 1) shows the excellent analytical abilities of the S2 PUMA particularly for light elements with a strong linear association (R^2 =0.99953) and a 3 σ standard deviation of 0.1620 % for a concentration range of 17.9 %.

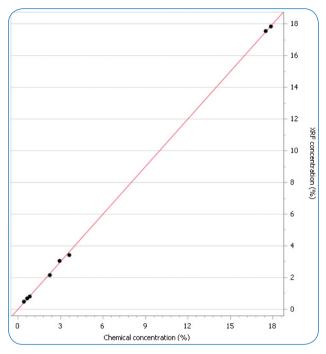


Figure 1: Calibration curve for Mg in SPECTRA.ELEMENTS

Analytical Precision

To demonstrate the impressive analytical stability of the S2 PUMA, the measurement of one sample was repeated 10 times every 17 minutes. Table 2 lists the measurement conditions. After each analysis the sample was unloaded from the sample chamber. The analytical statistics of this repetition test on the S2 PUMA and the high-precision results with low relative standard deviations are given in Table 3.

Voltage [kV]	Current [µA]	Filter	Measurement Time [s]					
20	130	none	100					
Table 2: Massurement conditions								

Table 2: Measurement conditions

	MgO [wt%]	Al ₂ O ₃ [wt%]	SiO ₂ [wt%]	P ₂ O ₅ [wt%]	SO ₃ [wt%]	K ₂ O [wt%]	CaO [wt%]	TiO ₂ [wt%]	MnO [wt%]	Fe ₂ O ₃ [wt%]
Rep-1	0.855	2.27	8.60	0.119	0.096	0.442	47.28	0.129	0.074	0.833
Rep-2	0.850	2.32	8.60	0.118	0.094	0.430	47.25	0.121	0.070	0.883
Rep-3	0.893	2.29	8.61	0.116	0.096	0.447	47.23	0.126	0.069	0.860
Rep-4	0.812	2.32	8.61	0.113	0.093	0.433	47.25	0.122	0.072	0.852
Rep-5	0.874	2.39	8.60	0.116	0.093	0.444	47.30	0.120	0.078	0.848
Rep-6	0.866	2.31	8.62	0.120	0.094	0.451	47.32	0.125	0.075	0.844
Rep-7	0.879	2.26	8.62	0.111	0.095	0.452	47.28	0.121	0.078	0.822
Rep-8	0.864	2.29	8.59	0.123	0.095	0.442	47.22	0.127	0.076	0.844
Rep-9	0.810	2.27	8.61	0.110	0.095	0.447	47.34	0.121	0.073	0.865
Rep-10	0.859	2.31	8.63	0.111	0.095	0.449	47.31	0.129	0.075	0.853
Average	0.856	2.30	8.61	0.116	0.094	0.444	47.28	0.124	0.074	0.850
Abs. Std. Dev.	0.027	0.04	0.01	0.004	0.001	0.007	0.04	0.004	0.003	0.017
Rel. Std. Dev.	3.14	1.66	0.14	3.79	1.23	1.61	0.09	2.97	4.12	1.97

Table 3: Precision of the measurement (measurement time 100 s) of the main components in limestone

Measurement Accuracy

An example for the analytical accuracy of the S2 PUMA is given below. The results of the analysis, based on the same calibration as above, and the reference values are listed in Table 4.

The values listed here show the very high agreement of measured and reference concentrations of the limestone sample. Particularly the important elements for limestone such as Ca and Fe get replicated very well and even the light element Mg is very close to its reference value.

	MgO [wt%]	Al ₂ O ₃ [wt%]	SiO ₂ [wt%]	P ₂ O ₅ [wt%]	SO ₃ [wt%]	K ₂ O [wt%]	CaO [wt%]	TiO ₂ [wt%]	MnO [wt%]	Fe ₂ O ₃ [wt%]
Reference	17.50	1.240	4.300	0.048	Т	0.430	32.00	0.060	0.042	0.650
Measured	17.52	1.275	4.302	0.046	0.103	0.430	32.13	0.063	0.037	0.635
Abs. Devi- ation	0.02	0.035	0.002	0.002		0.000	0.13	0.003	0.006	0.015

Table 4: Accuracy test of reference material measured against the calibration (measurement time 100 s)

Due to its HighSense beam path and based on the LE configuration the S2 PUMA delivers excellent light elements performance achieving optimum results within shortest measurement times. Additional benefits are the low cost of operation since the analysis was performed using the integrated vacuum mode instead of expensive helium flushing. Furthermore the simple operation due to TouchControl makes the S2 PUMA the perfect tool for quality control in industrial environments.

Links S2 PUMA XY Autochanger

www.bruker.com/s2puma-xy-autochanger

Minerals

www.bruker.com/S2PUMA-Applications

SPECTRA-ELEMENTS

www.bruker.com/SpectraElements

Bruker AXS GmbH

Karlsruhe · Germany Phone +49 721 50997-0 Fax +49 721 50997-5654 info.baxs@bruker.com

www.bruker.com