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Non-Coplanar or “In-Plane” GID Solutions |
for Soft Matter and Crystalline Materials N

Introduction

Non-coplanar GID (Grazing Incidence Diffraction) emerged in
the early 1990s as a technique for investigating the near-sur-
face region of samples (ten or fewer nm beneath the air-sample
interface). It exploits the high intensity of the total external
reflection condition while simultaneously Bragg-diffracting from
planes that are nearly perpendicular to the sample surface.
Figure 1 shows the experimental geometries used for coplanar
and non-coplanar or “in-plane” GID. More extensive informa-
tion about the theory and practice can be found in the review
article by Pietsch (Current Science, vol. 78, no. 12, 2000) and

in the Bruker AXS Analytical Application Note #377, Labora-
tory X-ray Diffraction Setup for Studies of Ultra Thin Films and
Nanostructures and the references therein. Related techniques
include reflectometry and GISAXS (Grazing Incidence Small-
Angle X-ray Scattering), as shown in figure 1.

Questions Answered by Non-Coplanar or “In-Plane”
GID

Non-coplanar GID is used for determining information in the
plane of the sample surface, which is why it is also referred
to as “in-plane” diffraction. In particular, lattice parameters,
surface-plane relaxation, texture and crystallite size are among
the sample information that can be obtained with GID. Soft
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matter such as gels, polymers and liquids, single crystals, poly-
crystalline sheets and powders can be investigated. Particular
applications include:

m Polycrystalline materials: Phase ID and lattice parameters,
lateral grain size, in-plane preferred orientation.

m Single crystals: in-plane lattice parameter (high accuracy
using the bond method), azimuthal orientation of layers with
respect to the substrate, evidence of twinning.

m Soft matter: in-plane size and shape of colloids, distance
correlation functions, length scales of in-plane density modu-
lations.

m Any other in-plane applications where standard diffraction
geometries fail due to lack of scattered intensity

Instrumentation

Bruker AXS Diffraction Solutions offer two optimized configura-
tions for performing non-coplanar or “in-plane” GID. Both are
extensions of commonly configured D8 DISCOVER instru-
ments for thin film and powder applications. For both configu-
rations, the full functionality of the underlying D8 DISCOVER
without compromises is included. This means that a wide
range of experiments, in addition to the non-coplanar GID
measurements, can be performed.
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The first configuration, the D8 DISCOVER Ultra-GID, enables
switching between coplanar and non-coplanar geometries by
changing the orientation of the x-ray tube and sample relative
to the detector. With the Ultra-GID configuration, it is also

(or “in-plane”, in the plane Figure 1:

The scattering geometries
involved in IP-GID
(,in-plane” Grazing Incidence
Diffraction), GISAXS, and
reflectometry.

o; = incident angle,
commonly in the
regime of total external
reflection

o = exitangle

0 = diffraction angle

possible to add various types of Ge channel-cut monochroma-
tors, enabling high-resolution thin-film measurements. The
Ultra-GID is shown in figure 2, and more detailed information is
available in the Ultra-GID application note #377.

Figure 2:  The D8 DISCOVER Ultra-GID, which can be configured for coplanar (left) or non-coplanar (, in-plane”) measurements.
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The second non-coplanar GID configuration is a dual-goniom- Either the D8 DISCOVER Ultra-GID or the dual-goniometer
eter system, with one detector for coplanar measurements system offers the following advantages for performing non-
and one detector for non-coplanar measurements. Figure 3 coplanar GID:

shows a dedicated set-up with an Eulerian cradle mounted to

the horizontal goniometer, which enables rotation, tilting and = Exact positioning of o, the incident angle.

surface mapping of the sample. Alternatively, the horizontal
goniometer can be used to support relatively bulky troughs for

m Perfect adaptation of the resolution to sample properties.

the measurement of liquids. The set-up incorporates a motor- = [llumination of large sample areas, allowing greater intensity.

ized z stage for the height alighment of the trough in combina-
tion with an anti-vibration table (not shown). A variety of other
sample stages and environments are available as well.

Figure 3:

Figure 4:

m Easy performing of in-plane reciprocal space mapping.

The dual-goniometer system.
Shown in this configuration is

a Pathfinder for the coplanar
measurements, and an equatorial
Soller coolimator plus scintillation
counter for the non-coplanar or
"in-plane” measurements.
Incident beam side: line focus
X-ray tube, Gobel Mirror, Auto-
absorber, 2-bounce channel-cut,
pin-hole collimator.

A similar instrument to that shown
in Figure 3, with the Eulerian
cradle replaced by a Universal
Motion Concept (UMC) z-stage.

* Note that the detectors can

be upgraded to 1-D detector for
information in the ay, or vertical
direction (refer to figure 1 for the
illustration of o).



Example Application #1: In-Plane Lattice Parameter of Strained Si

Background: To increase the mobility of the conduction elec- measures the amount of stretching, as revealed in the angular
trons in Si, a thin silicon layer is grown on top of a substrate position of the reflections. In addition, since the substrate signal
with a slightly larger lattice constant. This causes the Si-lattice s quite large, non-coplanar GID is useful for enhancing the rela-
to stretch in the direction along the surface. Non-coplanar GID tively small signal coming from the thin, surface Si layer.

Method: In-Plane Bond Method (fig. b)

Source: Cu FL sealed tube operated at 1.6 kW

Primary Optics: Goebel mirror, rotary absorber, 0.12° equatorial Soller

Sample Stage: Vacuum chuck (optional DHS 1100 high-temperature chamber for non-ambient investigations)
Secondary Side: 2 Nal scintillation counters

Results: asi swraned = 54728 (2) A (8g; unstrained = 54309 A) (a = lattice parameter)

The analysis of the measurement data was done using TOPAS
P for profile fitting (fig. 6). The angular difference Ag of the
reflection measured in both "+" and "-" geometry at very high
diffraction angles is used to accurately determine the lattice

spacing.

Figure 5:  The experimental configuration for measuring strained Si. This is the in-plane Bond
method, with two scintillation counters.
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Figure 6:  The analysis for the in-plane Bond method.
Black line: measurement results
Red line: TOPAS P fit results
Bottom black line: difference plot



Example Application #2: In-Plane Reciprocal Space Mapping

Background: Reciprocal space mapping is commonly used to to 1) enhance the amount of signal from the layer, and 2) meas-
measure the relaxation, tilt and mosaicity of a layer with respect  ure direction-dependent changes in the plane of the sample
to the substrate. The grazing incidence geometry can be used surface.

Method: Looped scans in angular space
Source: Cu FL sealed tube operated at 1.6 kW
Primary Optics: 60 mm Goebel mirror, rotary absorber, 0.35° equatorial Soller
Sample Stage: Small goniometer head (optional motorized tilt stage)
Secondary Optics: 0.35° equatorial Soller, Nal scintillation counter
Results: The in-plane lattice constants of LSMO can be obtained.
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Figure 7:  The reciprocal space map in the vicinity of the 220 reflection of LSMO (LaSrMnOg) on STO (SrTiO;) shows two
domains due to orthorhombic symmetry.
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Figure 8:

The reciprocal space map in the vicinity of the 200 reflection. Note that the layer reflection intensity is much greater than that of

the substrate.



Example Application #3: GISAXS on Porous Si

Background: GISAXS (Grazing Incidence Small-Angle X-ray
Scattering) is a measurement technique that can be performed

with the two instruments discussed in this report, the Ultra GID
and the dual-goniometer system.

Method: Evaluate the scattering around the specularly reflected beam, in the “in-plane” or non-coplanar
direction. This is the direction perpendicular to the direction explored in a reflectometry experi-
ment.

Source: Cu FL sealed tube operated at 1.6 kW

Primary Optics:

Goebel mirror, rotary absorber, 0.12° equatorial Soller

Sample Stage:

Centric Eulerian cradle with small goniometer head attachment (2 rotation arcs)

Secondary Optics:

0.12° equatorial Soller, Nal scintillation counter

Results: (evaluation shown in figure 9)
Particle radius: 12.2 A
Sigma of size distribution: 12.4 A
Hard-Sphere particle radius: 10.2 A
Hard-Sphere volume fraction: 0.65
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Figure 9:

Conclusion

With the addition of a few components, the modularity and
flexibility of the D8 DISCOVER platform was utilized to make
two optimized configurations for IP-GID and GISAXS. For both
configurations, the full functionality and flexibility of the underly-
ing D8 DISCOVER without compromises is included. This

was shown by the variety of sample stages (Eulerian cradle
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or UMC), detectors (LYNXEYE, scintillation and others) and
primary optics (soller slits or Ge channel-cut monochromators).
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